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Free choice shapes normalized value signals in
medial orbitofrontal cortex
Hiroshi Yamada1,2,3,4, Kenway Louie1, Agnieszka Tymula1,5 & Paul W. Glimcher1,6

Normalization is a common cortical computation widely observed in sensory perception, but

its importance in perception of reward value and decision making remains largely unknown.

We examined (1) whether normalized value signals occur in the orbitofrontal cortex (OFC)

and (2) whether changes in behavioral task context influence the normalized representation

of value. We record medial OFC (mOFC) single neuron activity in awake-behaving monkeys

during a reward-guided lottery task. mOFC neurons signal the relative values of options via a

divisive normalization function when animals freely choose between alternatives. The

normalization model, however, performed poorly in a variant of the task where only one of

the two possible choice options yields a reward and the other was certain not to yield a

reward (so called: “forced choice”). The existence of such context-specific value normal-

ization may suggest that the mOFC contributes valuation signals critical for economic

decision making when meaningful alternative options are available.
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A growing body of evidence indicates that value signals
distributed in the brain shape decision-making
behavior1–3. Such value signals are especially prominent

in the orbital and medial areas of prefrontal cortex4 and the
parietal cortex5,6 where neural activity represents value infor-
mation in a diverse array of paradigms7. Notably, these value
signals do not simply reflect the fixed values assumed by many
models of choice8–10, but instead the magnitudes of these value
signals have been shown to depend on present or past alter-
natives11–15. For example, a pioneering finding in orbitofrontal
cortex (OFC) indicates that OFC neurons signal the relative
values of food items among the alternatives monkeys have
recently encountered in a block of trials16. This finding implies
that value signals identified in the OFC may reflect comparative
computations such as “divisive normalization”, a common cortical
computation for relative information coding proposed to explain
nonlinear response properties in sensory cortices17. However, it
remains unclear how or if the value signals in these prefrontal
areas are normalized and incorporated into the process of
choosing among alternatives.

To investigate the direct link between normalized values signals
and choice behavior, we focused on the medial orbitofrontal
cortex (mOFC, see Rudebeck and Murray)[4,7]. mOFC is a
subdivision of the OFC medial to the medial orbital sulcus
(Brodmann’s area 14, 13a, 13b, and 11m), and reciprocally con-
nected to both medial and orbital prefrontal network areas.
Although previous studies have identified neural signals related to
reward values in the OFC, they have not specifically searched for
normalized value representations in prefrontal areas. For

example, human ventromedial prefrontal cortex (vmPFC), mostly
along the medial wall, has been shown to represent a diverse set of
reward values in various behavioral tasks, including both active
value-guided decision making18–22 and passive item valua-
tion23,24 when no choice is made. Single neuron activity in
monkey vmPFC carries value signals that reflect offer values of
gambles25, motivational level26,27 and a possibility of reward28. In
the lateral subdivision of OFC (lOFC, a subdivision of OFC lateral
to medial orbital sulcus), neurons have been shown to signal the
relative values of items when monkeys perform behavioral tasks
both with and without choices11,12. Value signals are evident
across all of these prefrontal network areas; however, none
of the areas has been examined to determine whether these value
signals employ a computational process, divisive normalization,
when animals choose freely among items of different reward
values.

We thus specifically targeted the mOFC to test whether single
mOFC neurons signal the normalized values of rewards when
monkeys made “free choices”: choices between two available
rewarding items. We found that a common cortical computation,
divisive normalization, is implemented in the activity of mOFC
neurons representing reward values under these conditions.
These normalized value signals were prominent when monkeys
made free choices, but surprisingly were attenuated when mon-
keys were “forced” to choose one of the options: when one of the
two possible rewards was signaled to have zero value or impact
with certainty and the other was potentially rewarding, a situation
colloquially referred to in the neuroscience literature as a “forced
choices” (a nomenclature we adopt in this paper)29.
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Fig. 1 Lottery task and choice behavior. a A sequence of events in free choice trials. Pie charts indicated reward magnitudes from 60 to 600 μl in 60 μl
increments. Gray color of the central fixation target indicated that the monkeys could choose either option freely. In the forced choice trials (red or yellow
fixation color), monkeys were required to choose the color-matched target among the alternatives, unless otherwise the trials were aborted. Positions of
the risky and safe options were fixed during a single payoff block. Gray bars (top) indicate the 1.0 s time periods used to analyze neuronal activity; cue,
saccade and feedback periods. b Payoff matrix: in each payoff block 1 to 4, the monkeys chose between a 100% fixed amount of water reward and a lottery
that would deliver a reward with 50% probability (5 different risky reward magnitudes per one block). For example, in payoff block 1 (PB1), the safe 60 μl
reward was represented by a 1/10 filled pie chart and the risky option was represented by a pie chart ranging from empty to 4/10 full. c An example payoff
block sequence (randomly selected without replacement until all four payoffs were presented). In a block the first 36 trials were forced choice trials. Then,
50 free choice trials (10 of each type) followed in random order. d Percentages (P) of risky choice plotted against magnitude of risky reward in each PB
(indicated by color). Dashed colored lines indicate where risky and safe options have equal expected value
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Results
Cued-lottery task in monkeys. To examine value coding during
economic choice behavior, we trained two monkeys to perform a
cued-lottery task with varying reward payouts and probabilities
(Fig. 1). During the task, visually displayed pie charts indicated
reward magnitudes to the monkeys, while risky (50% reward,
otherwise nothing) and safe (100% reward) options were pre-
sented on the left and right side of fixation in each block of trials
(Fig. 1a). Monkeys made choices between the risky and safe
options among 20 lottery pairs (Fig. 1b); these pairs were divided
into four separate groups of lottery pairs (five risky options
against one safe option) and presented to the monkeys as blocks
of trials (Fig. 1c, payoff block (PB)). In each block 36 “forced
choice” trials were followed by 50 “free choice” trials. A gray
central fixation stimulus indicated free choice trials, while a red or
yellow central fixation stimulus indicated forced choice trials in
which only a choice of the color-matched target would yield a
reward. In each PB, the five lottery pairs were systematically
matched in terms of their relative values with the expected value
of risky option (Fig. 1b, LP1–5): considerably larger than the safe
option (LP5); slightly larger (LP4); equal (LP3); slightly smaller
(LP2); or considerably smaller (LP1). Together, these four blocks
allowed us to examine the extent of relative value coding in
mOFC neurons.

Details of the behavioral training, learning progress and
behavioral performance of the animals in the lottery task have

been reported previously30. Briefly, after completing the training,
monkeys learned the expected values of risky and safe options,
and chose risky options more frequently if the expected values of
risky options were higher than those of safe options and vice
versa (Fig. 1d). Behavioral measures, such as percent correct trials
and saccade reaction time, were not consistently related to
expected value between monkeys (Supplementary Fig. 1), sug-
gesting that potential confounding factors such as motivation or
attention did not vary between conditions. To examine the
mechanism by which mOFC neurons signal values, we sampled
182 mOFC neurons (Supplementary Fig. 2). Of these sampled
units, 101 neurons (50 and 51 neurons from monkey DE and HU,
respectively) were recorded and analyzed during all or almost all
of the four PBs while monkeys were engaged in the lottery task
(minimum 200 trials).

Relative value coding in mOFC neurons. We first examined
whether the activity of mOFC neurons represents relative value
information in a general way (without utilizing normalization
equations specifically in our analysis; see Methods), as has been
seen in an adjacent area, the lOFC16, where neurons have been
shown to signal the relative values of items among possible
alternatives in a block of trials. Cue period activity from an
example relative value coding neuron from our dataset is shown
in Fig. 2a. In each payoff block differentiated by color, the neuron
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Fig. 2 Relative value signals in the activity of mOFC neurons. a Rasters and histograms of an example mOFC neuron modulated by the relative value of
options. The activity aligned at cue onset during free choice trials was shown for 20 lottery pairs (four PBs times five LPs, 200 trials). Black dots in the
histograms indicate raster of spikes. Gray bars indicate the cue period to estimate the neuronal firing rates shown in b. SAC indicate approximate time of
saccade onset. b Activity plot of the mOFC neuron in a against the expected values of risky (EVr) and safe option (EVs). Error bars indicate s.e.m. The
neuron showed positive and negative regression coefficients for EVr and EVs (EVr+EVs− type, EVr, 0.042, EVs, −0.048, AIC= 1283), respectively.
c Activity histogram of 15 mOFC neurons modulated by relative values of risk and safe options during cue period (EVr+EVs– type). Activity in each of four
payoff blocks (PB1–4) is shown for the five types of lottery pairs (LP1–5). d Percentage of mOFC neurons modulated by relative values during three task
periods. Gray indicates activity showing the positive and negative regression coefficients for EVr and EVs, respectively (EVr+EVs− type). White indicates
activity showing negative and positive regression coefficients for EVr and EVs, respectively (EVr−EVs+ type)
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showed increasing activity as the relative value of risky options
increased (LP1 to 5): the larger the expected value of the risky
option compared to the safe option, the higher the neural activity.
This activity modulation diminished as the expected value of the
safe option increased from PB1 to PB4. Consistent with a relative
value representation, the activity of this neuron was modulated by
the expected value of both the risky (EVr) and safe (EVs) options,
with opposite modulation effects (Fig. 2b, n = 200, Akaike’s
information criterion (AIC) = 1283, regression coefficient; EVr,
0.042, P< 0.001; EVs, −0.048, P< 0.001; intercept, 19.6, P<
0.001). This relative value coding was found in 28% of mOFC
neurons during the cue period. Of the mOFC neurons, 15% (15/
101) showed increasing activity as the expected values of risky
option increased and of safe options decreased (Fig. 2c, EVr+EVs
type), while 13% of neurons (13/101) showed increasing activity
as the expected values of risky options decreased and of safe
options increased (EVr−EVs+ type). Relative value signals of this
kind were evident across the entire decision-making interval
(Fig. 2d): when monkeys made decisions based on cue informa-
tion (cue period, 28%), after saccadic decisions and prior to
outcome feedback (saccade period, 29/101, 29%), and during
outcome feedback (feedback period, 24/101, 24%); see gray lines
in Fig. 1a for three task periods: cue period (1.0 s window after
cue onset), saccade period (1.0 s window after saccade onset) and
feedback period (1.0 s window after feedback onset). There was
no significant difference in the proportion of modulated neurons
among the task periods (χ2 test, n = 303, P = 0.584, χ2 = 1.075, df
= 2). In total, 27% (81/303) of the task periods showed activity
modulation by the relative value of options, and 48 neurons
exhibited relative value coding in at least one of the three task
epochs. These 81 relative value signals were used in further
analyses to test in greater detail how the value signals are nor-
malized. Note that only a small percentage of neurons exclusively
encoded choice location (7/101, 7/101 and, 5/101 during cue,
saccade and feedback periods), consistent with previous findings
in lOFC16,31.

Normalized value coding in mOFC neurons. A common cor-
tical computation underlying relative information coding in both
sensory and decision-making brain regions is divisive normal-
ization13,17. To examine the role of divisive normalization in
mOFC relative value coding, we fit the observed mOFC data to a
standard normalization equation:

R ¼ Rmax
β þ EV1

σ þ EV1 þ EV2

where the firing rate R depends on the expected values of both
alternatives. For a given neuron, EV1 and EV2 were the expected
values of the two options. If a neuron increased firing rate as the
value of the risky option increased, then EV1 was defined as the
risky option and EV2 as the safe option. If a neuron increased
firing rate as the safe option increased in value, then EV1 was
defined as the safe option and EV2 as the risky option. Rmax, β
and σ were free parameters, with Rmax characterizing the maximal
level of neural activity. β and σ determine the contribution of the
expected values to neuronal responses, with β governing the level
of activity at “baseline” (when both EV1 and EV2 are zero) and σ
determining the sensitivity of neuronal responses to the expected
values (large σ means low sensitivity). We refer to this common
normalization equation as the “advanced fractional model”, and
note that it yields non-linear responses to changes in the expected
values as shown in the output response visualized in Fig. 3 (left
panel, advanced fractional model).

We first fit the advanced fractional model to the activity of
mOFC neurons during “free choice” trials (trials on which both
the risky and safe options offered non-zero expected values), and
compared this advanced fractional model (M1) with other
possible functional forms of normalization: a “simple” fractional
model (M2), a difference model (M3) that has been argued for in
some cortical32 and subcortical structures33 and a range normal-
ization model (M4) previously used in studies conducted in the
lOFC11,12 (see Fig. 3 and Methods for details). To determine
which model best describes observed mOFC activity, we
compared the AIC term for each model. AIC measures the
goodness of model fit with a penalty for the number of free
parameters employed by the model. As demonstrated for an
example neuron (Fig. 4a; same neuron as Fig. 2a), the advanced
fractional model was the best-fitting model among the four
alternatives we explored (n = 200, see AIC values in Fig. 4a,
percent variance explained: trial-based, 13.5%; mean responses-
based, 46%). For each neuron and task epoch with relative coding
activity, we quantified AIC differences between alternative models
and determined which model showed the smallest AIC values
across the population. These AIC differences indicated that the
advanced fractional model best for described mOFC activity at
the population level (Fig. 4b, n = 81, one-sample t-test, df = 80;
M1–M2, P< 0.001, t = −4.35; M1–M3, P< 0.001 t = −3.53;
M1–M4, P< 0.001, t = −4.10). We also confirmed that the
advanced fractional model was better than other potential
alternative models, including ones representing the expected
values of risky options, expected values of safe options, expected
values of chosen options and the choice of risky options, as well
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as a null model and an artificial model (Fig. 4c, n = 81, one-
sample t-test, df = 80; M1–M5, P< 0.001, t = −8.71; M1–M6,
P< 0.001, t = −7.76; M1–M7, P< 0.001, t = −10.2; M1–M8,
P = 0.009, t = −2.68; M1–M9, P< 0.001, t = −7.09; M1–M10,
P< 0.001, t = −6.96). In summary, of the models tested, relative
value coding in the activity of mOFC neurons was most
consistent with a divisive normalization computation.

To evaluate the performance of the model, we estimated
percentages of variance explained (see Methods). The divisive

normalization model performed well compared to the other three
relative value models (Fig. 5), as 40% of the variance was
explained by the advanced fractional model in the mean
response-based estimation in 20 lottery pairs (Fig. 5a, n = 81,
paired t-test, df = 80; M1 vs. M2, P< 0.001, t = 8.38; M1 vs. M3
EVs, P< 0.001, t = 6.54; M1 vs. M4, P< 0.001, t = 7.65). Similar
results were obtained when the percent variance explained was
estimated based on single trial data (Fig. 5b, n = 81, paired t-test, df
= 80; M1 vs. M2, P< 0.001, t = 5.87; M1 vs. M3 EVs, P< 0.001, t =
4.94; M1 vs. M4, P< 0.001, t = 5.55), though as expected the single
trial-based percent variance explained was lower than the mean
response-based measure due to trial by trial variability in the neural
activity. Furthermore, cross-validation demonstrated model expla-
natory power in test data as well as training data, with the
advanced fractional model remaining the best model (Fig. 5c, test
data: n = 81, paired t-test, df = 80; M1 vs. M2, P< 0.001, t = 5.39;
M1 vs. M3 EVs, P< 0.001, t = 4.55; M1 vs. M4, P< 0.001, t = 5.45).
Note that percent variance explained decreased even in the training
data since the data size was half the size of the full data set.

To examine the descriptive ability of the advanced fractional
model, we verified whether the estimated normalization
parameters appropriately described all aspects of neural activity.
Across our population, estimated parameters were stable and
within reasonable ranges, with an Rmax of ~20 imp s−1 (Fig. 6a,
n = 81, Kruskal–Wallis test, P = 0.44, H = 1.62, df = 2), a
β of ~80 μl (Fig. 6b, P= 0.16, H = 3.72, df = 2) and σ of ~90 μl
(Fig. 6c, P = 0.07, H = 5.38, df = 2). Notably, estimated Rmax values
were strongly correlated with observed maximal firing rates
(Fig. 6d, n = 81, r = 0.68, P< 0.001, t = 8.18, df = 79). Estimated β
and σ parameters were also reliable as follows. We quantified
Rmax β σ−1, a term equivalent to output of the normalization
equation when EV1 = EV2 = 0; this quantity can be thought of as
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representing baseline firing rates in the normalization model34.
Across our population, Rmax β σ−1 values were significantly
correlated with observed baseline firing rates before the cue
stimuli appeared (Fig. 6e, n = 81, r = 0.41, P< 0.001, t = 4.00, df =
79). Thus, the estimated parameters of the normalization model
appear to appropriately capture aspects of the observed neural

activity, suggesting that the advanced fractional model may
underlie relative value signals in mOFC neurons.

Decision context and normalized value signals in mOFC. To
further test whether a normalized value code is specifically related
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Fig. 7 Attenuated value coding of mOFC neurons during forced choice trials. a Plots of the absolute value of regression coefficients for EVr (gray) and EVs
(white) during free and forced choice trials. Mean± s.e.m. during free and forced choice trials: EVr, 0.031± 0.002, free choice, 0.017± 0.002, forced
choice; EVs, 0.042± 0.003, free choice, 0.027± 0.003, forced choice. b Average of the absolute value of regression coefficients for EVr and EVs across
the trial block. Regression coefficients were estimated every 12 trials from the start of the payoff block. Error bars indicate s.e.m. c Activity plots of the same
neuron in Fig. 4 during the forced choice trials. Color lines indicated the best-fit lines during the forced choice trials. Gray lines indicated the best-fit lines
during the free choice trials as shown in Fig. 4a. d–f Probability density of the estimated parameters of the models during forced choice trials (brown), the
1st half of the free choice trials (green), and 2nd half of the free choice trials (blue). In d–f, triangles in the figures indicate the median. g Plots of the AIC
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to decision making during free choice, we examined neural
activity during the “forced choice” trials presented to the monkeys
at the beginning of each payoff block. These forced choice trials
presented identical task timing, cue displays and reward con-
tingencies as the previously described free choice trials; however,
in the forced choice trials, the fixation target color (red or yellow)
instructed the monkeys that only the color-matched target would
yield a reward (and that the other target was certain not to
provide a reward).

When the monkeys were instructed by the computer to
“choose,” the relative value signals evident in the regression
coefficients for the expected values of risky and safe options were
weak when compared to those observed on free choice trials in
the activity of the same neurons (Fig. 7a, n = 81, paired t-test;
EVr, P< 0.001, t = 7.67, df = 80; EVs, P< 0.001, t = 4.98 df = 80;
see also Supplementary Fig. 3 for activity histogram). While the
forced choice trials were presented to the monkeys at the
beginning of PBs, weak modulation in the forced choice trials was
not due to an adaptation process, as might be postulated to occur
in adjacent area lOFC11,12. The weak modulation in the forced
choice trials were maintained throughout forced choice trials
(Fig. 7b, one-way analysis of variance (ANOVA): forced choice
trials, n = 486 (81 × 3 × 2), P = 0.75, F = 0.29, df = (2, 483)).
Stronger modulation appeared only after the start of free choice
trials (paired t-test, P< 0.001, t = 3.66, df = 161, the last 12 forced
choice trials vs. the first 12 free choice trials) and was maintained
through a payoff block (one-way ANOVA: free choice trials,
n = 648 (81 × 4 × 2), P = 0.35, F = 1.09, df = (3, 644)). Thus,
relative value coding in mOFC neurons was apparently weaker
when monkeys were forced to choose one option.

Next, we examined the computational basis of these effects by
fitting the advanced fractional model to neuronal activity during
forced choice trials. Note that mOFC neurons could encode the
expected values of risky and safe option in two possible ways:
their activity could reflect the non-selectable option having the
value indicated by the pie chart stimulus (as in the free choice
trials) or the non-selectable option having a value of zero (we
tested both of these possibilities, see Methods). The model fit to
forced choice data in an example neuron (same neuron as in
Fig. 4a) showed an attenuation of the activity modulation by
relative value, evident as increases in both β and σ (Fig. 7c,
β increased from 47 to 243 μl; σ increased from 63 to 629 μl), with
a slight increase of Rmax from 35 to 47 Hz. The increase in β and σ
parameters produces a decreased sensitivity to relative value
information, which is evident as a shallower slope of model
responses during forced choice trials (color lines) compared to
free choice trials (gray dashed lines). Across our population, we
found increases in estimated β and σ parameters in forced choice
trials in several cases (Fig. 7e, f, see brown line indicated by gray
arrows), but also occasional negative values (indicated by black
arrows). In contrast to the similar distribution between early
(green) and late (blue) free choice trials, the parameter
distributions became wider and the density of the peak values
decreased during forced choice trials (brown) (n = 243 (81 × 3),
Brown–Forsythe test: β, P = 0.022, F = 3.89, df = 241; σ, P< 0.001,
F = 22.4, df = 241). The distribution of Rmax parameters during
forced choice trials was also changed (Fig. 7d, P< 0.001, F =
16.15, df = 241). Negative values in estimated β and σ indicated
that the advanced fractional model was no longer well fit to the
weak value modulations observed in some neuronal activity.
Indeed, performance of the model in describing neuronal activity
was worse in forced choice trials than in the free choice trials
(Supplementary Fig. 4). Among the four tested models,
however, the advanced fractional model remained the model
that best characterized mOFC activity in the forced choice trials
(Supplementary Fig. 5). In addition, the activity difference

between free and forced choice trials was not better explained
by behavioral measures, such as percent correct trials or saccadic
reaction times (Fig. 7g, n = 81, one-sample t-test, df = 80;
M11–M12, P = 0.004, t = −2.94; M11–M13, P< 0.001, t = −3.87).
Thus, the task context for value-based decision making—free
versus forced choice—changes the normalization computation in
mOFC neurons.

mOFC normalized value signals and risk attitudes of monkeys.
Lastly, we examined whether the divisively normalized value
signals observed in mOFC activity were related to other aspects of
the decision-making process, in particular the risk attitudes of the
monkeys. We estimated the correlation coefficient between
behavioral risk attitudes (percentages of risky choice when a
neuron was recorded) and neuronal activity, examined in trials
where the expected values of safe and risky option were identical.
Specifically, we examined whether firing rates in the equal
expected values trials were consistently deviated from the mean
firing rates of the neuron according to the monkey’s risk attitude;
under a subjective value code, neural activity would be system-
atically deviated from a linear function as a function of risk
preference of monkeys. We found a slight correlation between
neuronal activity and percentages of risky choices with opposite
signs of the effects among EVr+EVs− and EVr−EVs+ types
(Supplementary Fig. 6). Thus, divisively normalized value signals
in mOFC were somewhat related to the risk attitude of monkeys.

Discussion
Normalization is a canonical computational process widely
observed in the domain of sensory processing35–38, from early
sensory representation to higher-order phenomena such as
multisensory integration38. Here, we found that mOFC neurons
employ divisively normalized value coding during an economic
decision-making task. This is the first demonstration of the
common normalization computation in frontal decision circuits.
This normalization depended on task context: the response sen-
sitivity of mOFC neurons to reward values was stronger when
animals made choices in a free choice task. The normalization
model outperformed other models in the free choice task (Fig. 4b)
and performed equally well in the forced choice task compared to
other models (Supplementary Fig. 5a); however, the normal-
ization model better explained relative value coding in free versus
forced choice contexts (Fig. 7 and Supplementary Fig. 4). These
results suggest that the mOFC is critical for economic decision
making when comparing alternative rewarding options.

The orbital and ventromedial part of the frontal lobe is com-
posed of a large set of heterogeneous cortical regions. The orbital
network receives sensory inputs from several modalities, pre-
sumably to relate them to item preferences or values. The medial
network is widely believed to provide the major cortical output
related to emotion and mood4. mOFC seems to be functionally
situated in an intermediate position between these two network
areas. For example, the activity of vmPFC neurons is thought to
combine information about option values25 and satiety level26,27,
and might well be related to stochastic preferences and choice
behavior27. Perhaps the lOFC is the brain locus that signals the
relative values of items animals recently encountered11,12. Other
evidence suggests that the frontal pole region may signal an
animal’s decisions specifically after monkeys choose in “free
choice” trials at the time of outcome delivery39. Overall, our
present results suggest that mOFC neurons represent information
that combines aspects of both medial and orbital function to yield
normalized value signals, but primarily during so-called free
choice trials.
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In terms of relative value coding, the signals observed in mOFC
(Fig. 2) are similar in principle to those in lOFC11,12,16,40. They
represent relative value signals among the set of possible out-
comes in a block of trials. Although it is not known what type of
normalization is employed in lOFC neurons, one possible dis-
tinction between mOFC and lOFC in terms of relative value
coding is the dependency on the behavioral context. The free
choice-specific relative value coding in mOFC (Fig. 7) may
represent a key difference from lOFC neurons, where relative
value signals are observed even in non-choice situations during
classical conditioning12. The enhancement of value signals during
free choices is consistent with the finding in human mOFC that
value signals are specifically observed when subjects evaluate
economic options41. Enhanced value signals during free choice
have also been found in the activity of monkey amygdala neu-
rons42,43, which is connected to the orbitofrontal cortex. Thus,
mOFC could regulate behavioral sensitivity to reward values44

(i.e., gain) depending on behavioral context.
Many normative models of choice assume that values are repre-

sented in an absolute manner8–10. Under absolute value coding, the
neuronal discharge rate does not depend on what other values might
have been encountered. In contrast, under normalized coding, the
neuronal discharge rates reflecting a given value will depend on
factors such as other present and past values. Relative value signals
have been examined in single neuron activity in regions including
prefrontal11,12,16 and parietal cortex34, and striatum45 with relatively
few examples of studies using human neuroimaging14,46. This dis-
crepancy in the literature may arise from multiple differences in
species and methodologies. Blood oxygenation level dependent
(BOLD) activity is often examined using a linear regression
approach which would be unable to identify nonlinear normalized
signals, but instead would tend to identify such signals as mixtures or
positive and negative regression coefficients47,48. Indeed, there have
been only a couple efforts to search specifically for nonlinear
normalization-type representations in the BOLD signal49 and these
efforts have been successful to some degree.

How are divisively normalized value signals related to the mon-
key’s choice behavior? This still remains an open question, but one
possible explanation is that divisive normalization, which yields
decreased neural value sensitivity with increases in total values, would
yield decreased sensitivity to increase in values in behavior, known as
the subjective value or utility. Recent works in economic decision-
making studies hypothesized that neuronal activity is linearly cor-
related with subjective value functions, an approach successfully
examined in human imaging21,50 and monkey electrophysiology51,52

experiments. Our results suggest that the divisively normalized value
signals in mOFC were at least related to the risk attitudes observed in
corresponding monkey behavior. However, the precise relationship
between normalized value coding in mOFC and behaviorally derived
subjective values remain unknown, and further experimental and
theoretical work will be required to link behavioral and neural
observations for relative value coding.

The efficient coding hypothesis assumes that the neural code
adapts efficiently to the present behavioral context, and that
neurons change their firing rates in order to utilize their entire
dynamic range during encoding13. Efficient coding requires
input–output functions to use the entire response range to
represent the stimulus distribution53. In the domain of sensory
systems for perception, a large literature supports the hypothesis
that normalization is employed to achieve efficient coding17.
Moreover, a recent finding by Coen-Cagli et al.54 shows that
normalization processes in primary visual cortex can be flexibly
gated depending on the sensory context. In contrast to the sen-
sory domain, only a couple of direct and indirect tests have been
conducted to examine the implementation of efficient coding in
decision making11,12,14,34. Our current study highlights that

value-based divisive normalization occurs in frontal decision
circuits; furthermore, the modulation of this normalization by the
behavioral choice context suggests that the flexible gating of
contextual information occurs in both sensory and decision-
related computations. The existence of such context-specific value
normalization suggests that the mOFC contributes to the con-
struction of value critical for economic decision making.

Methods
Subjects and experimental procedures. Two rhesus monkeys were used (DE, 7.5
kg, 6 years; HU, 8.0 kg, 6 years). All experimental procedures were approved by the
New York University Institutional Animal Care and Use Committee and performed
in compliance with the US Public Health Service’s Guide for the Care and Use of
Laboratory Animals. Each animal was implanted with a head-restraint prosthesis
and a scleral eye coil55. Eye movements were measured using a scleral coil at 500 Hz.
Visual stimuli were generated by cathode ray tube (CRT) 30 cm away from the
monkey’s face when they were seated. After subjects practiced the lottery task for
6 months, they were proficient at making choices of risky and safe options30.

Electrophysiological recording. We used conventional techniques for recording
single neuron activity from mOFC. Monkeys were implanted with recording
chambers (Crist Instrument) targeting the medial part of the prefrontal cortex,
centered midline and 30 mm anterior in stereotaxic coordinates. Chamber location
was verified using anatomical magnetic resonance imaging (Siemens). In each
recording session, a stainless steel guide tube was placed within a 1 mm spacing
grid (Crist Instrument), and a tungsten microelectrode (1–2MΩ, FHC) was passed
through the guide tube. The electrode was lowered until reaching close to the
bottom of the brain after passing through the cingulate cortex. Electrophysiological
signals were amplified, band pass filtered and monitored and single neuron activity
was isolated based on spike waveform. We recorded 182 mOFC neurons from four
hemispheres of two monkeys (Supplementary Fig. 2). All single neuron activity was
sampled when the activity of an isolated neuron showed a good signal-to-noise
ratio (>3). No blinding was made. Sample size to detect the effect size (number of
the recorded neurons, number of the recorded trials in a single neuron and number
of the monkey used) was in estimated reference to the previous study34.

Cued-Lottery task. Animals performed one of two visually cued saccadic choice
tasks: forced choice and free choice trials. The color of the central target indicated
forced choice (red or yellow, indicating which of the two options was rewarded) or
free choice (gray) trials.

Forced choice trials: If the central fixation target was red or yellow, monkeys
were required to choose the color-matched target in order to receive any reward.
Each trial started with a 0.3 s 500 Hz tone, after which the monkey had 1.0 s to align
gaze to within 2° of a 1° diam central fixation target. After fixating for 0.4 s, two
peripheral 8° pie charts providing information about reward magnitude for each of
the two options were presented for 0.5 s, 8° to the left and right of fixation. Red and
yellow 1° choice targets appeared at these same locations 0.1 s after cue offset. At 0.3
s later, the fixation point disappeared, cueing saccade initiation. A correct saccade
that shifted gaze to within 3.5° of the choice target matching the color of the fixation
target could yield a water reward. Red and yellow colors were randomly assigned to
fixation and peripheral targets on each trial. When the central fixation target cued a
“safe” reward, animals received the reward indicated by the pie chart if they shifted
gaze to the associated target. When the fixation color cued a choice to the risky
target, animals received the reward indicated by the pie chart with a probability of
0.5, otherwise no reward. A 1 and 0.1 kHz 0.3 s tone indicated reward and no-
reward outcomes, respectively. A high tone preceded a reward by 0.2 s. A low tone
indicated that no reward would be delivered, but that the task had been performed
correctly. If animals chose a non-match target, the trial was aborted. A 2.0 s inter-
trial interval followed. Aborted and error trials were presented again.

Free choice trials: Trials began with the onset of a gray central fixation target. As
in the forced choice trials, pie charts indicated the magnitude of safe and risky
rewards. After offset of the fixation target, animals were free to choose by shifting
gaze to either target. The locations of the risky and safe targets were fixed during a
block of trials.

Pay-off and block structure. Pie-charts indicated reward magnitudes from 60 to 600
μl in 60 μl increments (Fig. 1a). A 5 μl reward was signaled by a blank pie chart. During
data collection, blocks of 86 trials were presented, in random order, built from one of
the 4 payoff blocks (Fig. 1c). The first 36 trials (6 repeats times 6 conditions, five risky
and one safe choices) in a block were forced choice trials. Then, 50 free choice trials (10
of each 5 type) followed. During a block the safe option was fixed and the magnitude of
the risky option varied randomly across its 5 possible values (Fig. 1b). The middle-
valued risky target always offered a reward of the same expected value as the safe target
in that block. A new block with a new payoff was then presented.

Calibration of reward supply system. The precise amount of liquid reward was
controlled and delivered to the monkeys by the use of solenoid valves. A 18-gauge
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tube (0.9 mm inner diameter) was attached to the tip of the delivery tube to reduce
the trial-by-trial variability of reward supply. The amount of reward in each payoff
block was calibrated by measuring the weight of water to 0.002 g precision (hence
2 µl) in single trial basis. Note that if we used bigger diameter tubes attached to the
tip (4 mm inner diameter), the variability of reward sizes increased dramatically.

Statistical analysis. For statistical analysis, we used the statistical software package
R (http://www.r-project.org/). All the statistical tests we used were two tailed.

Behavioral analysis. We examined whether monkey's choice behavior depended
on the relative value of risky and safe options. In each payoff block, five risky
options were paired with one safe option as five types of lottery pairs (LP) in terms
of their relative values; expected values of risky options were either considerably
larger than the safe option (LP5), slightly larger (LP4), equal (LP3), slightly smaller
(LP2) or considerably smaller (LP1). We examined whether the percentage of risky
choices in each payoff block changed in parallel with the relative values of risky
option against safe options by plotting the percentage of risky choices in each of the
four PBs (Fig. 1d). The behavioral results have been previously reported in Yamada
et al.30 In addition, we quantified the percentages of correct trials (i.e., non-aborted
trials) in each of the 20 lottery pairs and saccadic reaction times (latency of
responses after the fixation point disappeared).

Neuronal analysis. We analyzed neuronal activity during three task periods: cue
period (1.0 s window after cue onset), saccade period (1.0 s window after saccade
onset) and feedback period (1.0 s after feedback onset). The maximum firing rate of
a neuron was defined as the maximal firing rate in a trial during the three task
periods. The baseline firing rate of a neuron was defined as the average firing rate in
the 600 ms window just before cue onset. To display peri-stimulus time histograms
of neural activity (Fig. 2a, c), the average activity curves were smoothed using a 100
ms Gaussian kernel (σ = 100 ms).

Relative value signals. To prescreen relative value signals in the activity of mOFC
neurons without normalization equations, we first determined whether mOFC
neurons signal relative value by using a variable selection approach. Neuronal
discharge rates (F) were fitted by a linear combination of the following variables:

F ¼ b0 þ b1EVrþ b2EVsþ b3Fb ð1Þ

where EVr and EVs were the expected values of risky and safe options, respectively.
The Fb, feedback type, took scalar values (1, 0) in reward and no-reward trials and
was included only during the feedback period. b0 was the intercept. Among many
possible combinations of these variables (b0, EVr, EVs, Fb), we selected one model
that contained the combination of variables showing minimal AIC:

AIC Modelð Þ ¼ �2log Lð Þ þ 2k ð2Þ

where L is the maximum likelihood of the model and k is the number of free
parameters in the model. If the selected model contained EVr and EVs and their
coefficients showed opposite signs (i.e., positive b1 and negative b2 or negative b1 and
positive b2), the discharge rates were regarded as being modulated by the relative
value of risky and safe options. Two types of relative value modulation (positive b1
and negative b2: EVr+EVs−, or negative b1 and positive b2: EVr−EVs+) were iden-
tified. Neuronal activity during free choice trials was used for this classification.

Choice signals. To examine whether the mOFC neurons signal the spatial choice
of monkeys, we also analyzed neuronal discharge rates by using a variable selection.
The model used for this approach included an additional parameter for spatial
choice location:

F ¼ b0 þ b1EVrþ b2EVsþ b3Fbþ b4Cho ð3Þ

where Cho took scalar values (1, 0) in the trials if the monkey chose the left and
right targets, respectively. Fb was included only during the feedback period. Among
all possible combinations of these variables, we selected one model that contained
one combination of variables showing minimal AIC. If the selected model had b4
without b1–b3, the discharge rates were regarded as being exclusively modulated by
the left–right target choice. Note that the percentage of the activity modulated by
the relative values of options was not different than that estimated using Eq. 1.

Normalization models. 1. Advanced fractional model: The normalization equation
was originally proposed to describe nonlinear response properties in early visual
cortex, and later discovered to characterize neural activity in other sensory pro-
cessing areas and modalities17; recent work showed that normalization extends to
reward coding in parietal cortex13. Under the condition where a subject chooses
one option from two alternatives, the neuronal response to option 1, R1, depends
on the expected value of the two options:

R1 ¼ Rmax
β þ EV1

σ þ EV1 þ EV2
ð4Þ

where EV1 and EV2 are the expected values of option 1 and 2, respectively. Rmax, β
and σ are free parameters. Rmax determines the maximal level of neural activity. β
and σ determine the relative contribution of the expected values to neuronal
response, with β governing the theoretical level of activity when no cue stimulus
appeared and σ determining the sensitivity of neuronal responses to the expected
values (large σ means low sensitivity).

In the lottery task, the two options were defined as risky and safe options,
respectively, as follows. If the activity of the relative value coding neuron showed
positive and negative regression coefficients to the expected values of the risky
(EVr) and safe (EVs) options, respectively (i.e., EVr+EVs− type), EV1 and EV2

were the EVr and EVs, respectively. If the neuronal activity showed negative and
positive regression coefficients to EVr and EVs, respectively (i.e., EVr−EVs+ type),
EV1 and EV2 were the EVs and EVr, respectively.

2. Simple fractional model: The simple fractional model is a simplified form of
the normalization equation presented above. In the model, neuronal response to
option 1, R1, is given by:

R1 ¼ Rmax
EV1

EV1 þ EV2
þ b ð5Þ

As above, EV1 and EV2 are the expected values of options 1 and 2, respectively.
Rmax determines the maximal level of neural activity and b is the baseline firing rate
when no cue stimulus appears. Rmax and b are free parameters. In the lottery task, if
the activity of the relative value coding neuron showed positive and negative
regression coefficients for EVr and EVs, respectively (i.e., EVr+EVs− type), EV1

and EV2 were EVr and EVs, respectively. If the neuronal activity showed negative
and positive regression coefficient to EVr and EVs, respectively (i.e., EVr−EVs+
type), EV1 and EV2 were the EVs and EVr, respectively.

3. Difference model: In the difference model, neuronal response, R1, is a simple
linear function of the value difference between the two options:

R1 ¼ GðEV1 � EV2Þ þ b ð6Þ

G determines the magnitude of neural response to value difference (i.e., gain),
and b is the baseline firing rate when the expected values of options are equal or no
cue stimulus appeared. G and b were free parameters. This model is often used in
reinforcement learning models33 and race-to-threshold models32.

4. Range normalization model: A phenomena called range adaptation has been
observed in the activity of lateral OFC neurons11,12. The normalization equation
has not been clearly established to describe this type of neuronal activity, but we
assume the following equation as a range normalization model; this formulation
has been found to describe the activity modulation in lOFC neurons observed
previously (Fig. 3, right panel). In range adaptation, the relative value of an option
depends on the range of reward values of all options available in a block of trials. In
the model, neuronal response to option 1, R1, depends on the relative position in
the distribution of values:

R1 ¼ Rmax
EV1 � Vmin

Vmax � Vmin
þ b ð7Þ

Where EV1 was the expected value of option 1. Vmax and Vmin are the largest and
smallest reward values in a block of trials, respectively. The denominator defines
the range of the reward values in a block of trials, while the numerator indicates
relative position of the expected values of option 1 according to the minimal value
in the distribution of values, and thus, they represents the relative position of the
expected values of option 1 as a percentage in the distribution of values in a block
of trials. Rmax determines the semi-saturating firing rate and b is the baseline firing
rate when no cue stimulus appears. Rmax and b are free parameters. Note that in
this assumed model, the value is not normalized by the values of other options, but
rather by the range of reward values available in a block of trials.

In the lottery task, Vmax and Vmin in first payoff block were 240 and 0 μl (no
reward), respectively, and hence the value range was 240 μl. In the second payoff
block they were 360 and 0 μl, and the value range was 360 μl. In the third and
fourth payoff blocks, value ranges were 480 and 600 μl, respectively. As seen in
Fig. 3 (“Range normalization model”), this model formulation predicts a block-
dependent range adaptation in neural firing rate: the predicted sensitivity of
neuronal firing rate to risky values decreases as value range increases according to
payoff block. Indeed, the output of the model was very similar to previously
published results (Figs. 5B and 6B in Padoa-Schioppa, 2009)11.

Other possible alternative models. 5. Expected values of risky options: In the
model, neuronal response, R1, is a simple linear function of the expected values of
risky options:

R1 ¼ aEVrþ b ð8Þ

a determines the magnitude of neural response to the expected values of risky
options and b is the baseline firing rate. a and b are free parameters.
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6. Expected values of safe options: In the model, neuronal response, R1, is a
simple linear function of the expected values of safe options:

R1 ¼ aEVsþ b ð9Þ

a determines the magnitude of neural response to the expected values of safe
options and b is the baseline firing rate. a and b are free parameters.

7. Expected values of chosen options: In the model, neuronal response, R1, is a
simple linear function of the expected values of options monkeys chosen in the
current trials:

R1 ¼ aEVchosenþ b ð10Þ

a determines the magnitude of neural response to the expected values of chosen
options (EV chosen) and b is the baseline firing rate. a and b are free parameters.

8. Choice of risky options: In the model, neuronal response, R1, is a simple
function of whether monkeys chose risky option or not in the current trials
(RiskyCho):

R1 ¼ aRiskyChoþ b ð11Þ

Where RiskyCho took scalar values (1, 0) in the trials if monkey chose risky and
safe options, respectively; a determines the magnitude of neural response to the
choice of risky option and b is the baseline firing rate. a and b are free parameters.

9. Null model: In the model, neuronal response, R1, is only a function of the
mean firing rate:

R1 ¼ b ð12Þ

b determines the mean firing rate. b is a free parameter.
10. An artificial model: In the model, neuronal response, R1, is a function of the

expected values of risky options in each payoff block:

R1 ¼ a1 EVrþ b1 þ a2 EVrþ b2 þ a3 EVrþ b3 þ a4 EVrþ b4 ð13Þ

a1–a4 determine the magnitude of neural response to the expected values of risky
options in the payoff block number 1 to 4, respectively. b1-b4 are the baseline firing
rate in the payoff block number 1 to 4, respectively. a1-a4 and b1-b4 are free
parameters.

To evaluate the relationship between our primary relative value models and other
known characteristics of OFC value representations, we calculated correlation
coefficients between the relative expected values (derived from the fractional model,
difference model and range model) and other possible known explanatory variables51,
such as the expected values of risky options, expected values of safe options, expected
values of chosen options and choice of risky options (Supplementary Table 1). Note
that these relative expected values were defined with no-free parameters, since the
estimated free parameters mentioned above were different neuron by neuron.

Fitting and selection of normalization models. To identify the best structural
model to describe the activity of mOFC neurons, we examined the four relative
expected value models as well as six other alternative models. We fitted the 10
alternative models to the activity of each single neuron that demonstrated relative
value coding as defined by our regression analyses. In each of the models, we
estimated a combination of the best-fit parameters to explain neuronal discharge
rates by using the statistical software package R. Best-fit parameters were estimated
in each epoch of the activity of the neuron based on single trial firing rates. We
used the nls() function with random initial values (repeated 100 times). In this
function, a set of parameters that minimize non-linear least squared values were
estimated. Across the population, the best-fit model showing minimal AIC was
selected by comparing AIC differences among models. If the AIC differences
against the nine other models was significantly different from zero at P< 0.05 by
one-sample t-test, the model was defined as the best model. The estimated para-
meters in the best-fit model were compared by using parametric and non-
parametric tests, respectively, with a statistical significance at P< 0.05. Note that
models were separately fitted to the free choice and forced choice trial data.

Evaluation of model performance. To evaluate model performance, we estimated
the percentages of variance explained, which is defined as one minus percentage of the
residual variances out of total variances. The percent variance explained in each neuron
was estimated based on either single trial data or mean responses data (segregated by
the 20 lottery pair conditions). The mean response-based percent variance explained is
similar in principle to explainable variance56. To validate the accuracy of estimation
and model selection, we performed two-fold cross-validation (i.e., half split) in each of
the model fits as follows. First, we prepared training data and test data, by randomly
dividing the data in half in each of 20 lottery pairs. Models were fitted to the training
data and best-fit parameters were estimated. By using these estimated parameters,
percentages of variance explained were estimated for the test data.

Model fit during forced choice trials. During the forced choice trials, monkeys
were required to choose the color-matched targets. If they selected the other target,
the trial was aborted and no reward was received. There are two alternative ways in

which mOFC neurons could encode the expected values of the risky and safe
options in such a situation and we tested both of them.

One possibility is that in the forced choice trials, mOFC neurons encode the
expected values of both risky and safe option in the same manner as in the free
choice trials (assumption 1). To examine this possibility, we fitted all four models
using the same assumptions as in free choice trials. The other possibility is that
mOFC neurons only encode the expected value of options that are available to the
chooser. In this case, they would encode the value of the color-matched target, but
they would encode the value of non-selectable option as 0 independent of the
reward size cued for non-matched target (assumption 2). This is because no matter
what reward size is associated with the non-selectable cue, choosing it gives no
reward since a trial is aborted after the choice of a non-matched target. To examine
this possibility, we fitted the models with a slight modification—the value of non-
selectable options was set to zero. For the option forced to choose, those values
were defined as those in the free choice trials (i.e., the values cued by pie chart).

We fitted the four alternative relative value coding models to the data under
both of these two assumptions and compared AIC values (Supplementary Fig. 5).
Percentage of the variance explained by the models was compared using the paired
t-test with a statistical significance at P< 0.05 (Supplementary Fig. 4).

Model fit including behavioral measures. To examine whether the activity dif-
ference between free and forced choice trials could be explained by differences in
state (i.e., motivation or attention) rather than differences in context, we fitted the
following three modified versions of advanced fractional models. The models were
simultaneously fitted to both free and forced choice trial data.

11: R1 ¼ Rmax
β þ EV1

σ þ EV1 þ EV2
þ aContext ð14Þ

12: R1 ¼ Rmax
β þ EV1

σ þ EV1 þ EV2
þ aPercent correct ð15Þ

13: R1 ¼ Rmax
β þ EV1

σ þ EV1 þ EV2
þ aRT ð16Þ

Where Context took scalar values (1, 0) in the free and forced choice trials,
respectively. Percent correct was the percentages of the correct trials estimated in
each of 20 lottery pairs in a given neuronal recording period. RT was the saccadic
reaction time after the central fixation target disappeared. Rmax, β, σ and a are free
parameters. We compared AIC to define which model best explained the activity
difference between free and forced choice trials.

Data availability. All relevant data are available from the authors.
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