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1 Introduction

Choices involving trade-offs between alternatives at different points in time are central to many branches

of economics. In evaluating such trade-offs, the standard model of exponentially discounted utility

(Samuelson, 1937) posits that a chooser will discount each alternative at a constant exponential rate

according to the length of time that passes between the moment of decision and the receipt of that altern-

ative, and make the choice that has the greatest discounted utility. In particular, since this model is time

consistent (Strotz, 1955), the preference between delayed alternatives will depend on the interval of time

that separates them, but not the time separating the alternatives from the moment of decision.

While behavioural economists and psychologists largely agree that exponential discounting is descript-

ively inadequate (Frederick et al., 2002), they do not agree on a preferred alternative model. In eco-

nomics, the dominant behavioural model is quasi-hyperbolic discounting (Laibson, 1997; O’Donoghue

and Rabin, 1999), which draws a sharp distinction between choices that involve the prospect of an im-

mediate reward and ones that do not: it is only in the presence of an immediately-available reward that

preferences may reverse. On the other hand, psychologists favour models of hyperbolic (Mazur, 1984)

or generalised hyperbolic discounting (Loewenstein and Prelec, 1992; Myerson and Green, 1995), which

allow for continuously declining discount rates.

Reflecting these differences in the modelling of discounting, behavioural economists and psychologists

also differ in the protocols they use to measure time preferences. In economics, identification of the

“present bias” parameter β of the quasi-hyperbolic model depends crucially on varying the absence or

presence of a “front-end delay” separating the moment of decision from the sooner reward. But since

the model implies that all delayed rewards are discounted at a constant rate, variation in the “back-end

delay” between sooner and later rewards is not essential to estimate the long-run discounting parameter

δ . By contrast in psychology, identifying the shape of a hyperbolic discount function requires more

extensive variation in back-end delays, but does not rely on varying front-end delay since the model does

not involve any discontinuity at the present. As a result of these distinct approaches, many datasets can

only be used to estimate one of these two popular classes of models, and there is a surprising paucity of

studies that allow for a comparison between economists’ and psychologists’ preferred models.

Although the quasi-hyperbolic and (generalised) hyperbolic models relax the assumption of an expo-

nential discount function, they retain the framework of discounted utility. According to this framework,

future rewards are weighted by a discount function D(t) ⩽ 1 which measures the weight attached to

utility t periods in the future relative to the present which has weight D(0) = 1. When choosing at time 0

between rewards at times t and t + k, both are discounted back to time 0 and the discount from t to t + k

is found by comparing the discounting that occurs from 0 to t +k to that which occurs from 0 to t. When

D(t) is exponential this detail is immaterial because the exponential function satisfies stationarity (Fish-

burn and Rubinstein, 1982): the discount from t to t + k is independent of the front-end delay preceding

t. However, the exponential model is the only stationary model of discounted utility. As an alternative to

generalising the discount function, Scholten and Read (2006) and Ok and Masatlioglu (2007) generalise

discounted utility itself, by measuring discounting relative to time t instead of time 0. It will be seen that

this approach will be necessary to adequately describe the data we report in this paper.
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In this paper, we report the results of a study that we originally designed to allow for a comparison

between the quasi-hyperbolic and (generalised) hyperbolic models of discounted utility. Over 300 parti-

cipants, recruited from a general UK sample, took part in an incentivised study in which we asked them

to state the amount on a specified sooner date (the “sooner equivalent”) that they would consider equally

desirable as a fixed amount on a specified later date. Our design both varies the front-end delay (three

levels: zero, one, and seven days) to identify the present bias component of a quasi-hyperbolic model and

provide for a test of stationarity, and also includes substantial variation in back-end delays (five levels:

seven, 14, 30, 90, and 180 days) to identify the shape of long-run discounting.

Our results are unexpected. First, we do not see any effect of front-end delay: at each back-end delay,

participants report sooner equivalents that are indistinguishable across the three levels of front-end delay.

Thus not only is there no present bias, but more generally the data satisfy stationarity. Under discounted

utility, only the exponential discount function has these features. However, we find that an exponential

function describes the data poorly: it is too shallow to capture the steep discounting of short intervals, and

too steep at longer intervals. In fact, it performs so poorly that a quasi-hyperbolic function – which allows

for steeper discounting specifically where a sooner reward is available immediately – both improves the

model fit (as measured by the Bayesian information criterion, BIC) and detects significant “present bias”

(β = 0.833, less than 1 with p < 0.0001), despite there clearly not being present bias in the data.

The explanation for this spurious finding of “present bias” is simple: the β parameter of quasi-hyperbolic

discounting effectively “decouples” the intercept of the discount function, better matching the shape of

long-run discounting, but by definition it can only do so for choices with no front-end delay. Since

behaviour does not differ across the three levels of front-end delay, the performance of the model would

be further improved by allowing this “decoupling” to occur even where there is a front-end delay. This

amounts to a model in which, in addition to long-run discounting captured by δ , all choices are subject

to an added penalty β to wait for a later reward, not only ones that do not involve a front-end delay. We

confirm this conjecture, and dub the resulting model “quasi-exponential discounting” (QED).

Clearly, our quasi-exponential proposal falls outside the framework of discounted utility: there is no

discount function, measured from time 0, that can generate this prediction. However it falls within a

more general framework of “relative discounting” (Scholten and Read, 2006; Ok and Masatlioglu, 2007)

in which discounting is context dependent. In particular, let the discount fraction ∆(t,k) measure the

amount of discounting that occurs over an interval of length k, starting at time t. Whereas under dis-

counted utility this discount fraction is derived from the discount function as ∆(t,k) = D(t + k)/D(t), in

relative discounting it is treated as a primitive and there need not be any discount function that generates

it. Models of this form have been proposed to account for subadditive discounting, the finding that an

interval is discounted more heavily when it is divided into subintervals than when it is left undivided

(Read, 2001; Scholten and Read, 2006). Specific examples of relative discounting models, suggested

previously in the literature, include the subadditive model proposed by Read (2001, equation 16), and

the “as soon as possible” (ASAP) model proposed by Kable and Glimcher (2010).

In principle, relative discounting opens considerable degrees of freedom in the modelling of ∆(t,k).

However, our finding of stationarity imposes a disciplining constraint: ∆(t,k) should depend only on

the back-end delay length k, and not on t. Both the subadditive and ASAP models have this feature,
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as does our quasi-exponential model. We suggest that a natural way to generate such models is to take

existing models of the discount function, defined over time measured from 0, and recast them as discount

fractions defined over the interval length k. Seen in this light, ASAP represents a recasting of the Mazur

(1984) simple hyperbolic discount function, while our quasi-exponential model is of course a recasting of

the quasi-hyperbolic function. Recasting the generalised hyperbolic function of Loewenstein and Prelec

(1992) in the same manner yields a model we refer to as “generalised ASAP”.

Overall, we find that the joint best-fitting models for our data, as measured by BIC, are the subadditive

model of Read (2001) and the generalised ASAP model. However, our quasi-exponential model provides

an excellent approximation to the best models, while enjoying the analytical simplicity and ease of

interpretation that it shares with its quasi-hyperbolic cousin. Indeed, just as quasi-hyperbolic discounting

represents a minimal relaxation of the exponential discount function that can account for diminishing

impatience, quasi-exponential discounting is a minimal relaxation of discounted utility that can account

for subadditivity. More generally, our findings illustrate how the study of discounting behaviour can

benefit from looking beyond the shape of the discount function to consider parsimonious extensions to

the discounted utility framework itself.

The paper proceeds as follows: Section 2 elaborates on the conceptual framework to our study, Section

3 sets out our research methodology, Section 4 reports results, and Section 5 provides a discussion.

2 Framework

In this Section we set out the conceptual framework underpinning our paper, and clarify the distinction

between discounted utility and relative discounting models. We also define the functional forms for each

of the models of discounting that we estimate in our data.

In our study, participants are asked at time 0 to specify an amount x which, if received at time t ⩾ 0,

they would consider equally desirable as receiving y at time t + k > t. The value of y is fixed, and the

front-end delay t and back-end delay k are varied across trials. The “sooner equivalent” x is constrained

to lie within [0,y], and a chooser who is more impatient will report a lower value of x.

Assuming discounted utility, the condition for indifference can be written as:

D(t)v(x) = D(t + k)v(y) (1)

where D(t) is the discount function, which measures the weight assigned to utility at time t relative to

utility at time 0 (with D(0) = 1), and v(x) is the instantaneous utility function.

More generally, following Scholten and Read (2006, equation 6) and Ok and Masatlioglu (2007, equation

1), we can write the indifference equation as:

v(x) = ∆(t,k)v(y) (2)
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where ∆(t,k) is the discount fraction (or relative discount factor), which measures the amount of dis-

counting that occurs over an interval of length k, starting at time t.

Ok and Masatlioglu (2007) derive a representation theorem for time preferences of the type described

by equation 2. They show that the only preferences in this class that obey transitivity are ones that

take the form of discounted utility as in equation 1; we define parametric exemplars of such models in

Section 2.1. Ok and Masatlioglu (2007) further show that the only relative discounting models that obey

stationarity are ones in which the discount fraction is a function of k alone; we define exemplars of such

models in Section 2.2. Finally, the only model that is both stationary and transitive is the standard model

of exponentially discounted utility.

2.1 Discounted utility models

Under discounted utility, ∆(t,k) is derived from the discount function as ∆(t,k) = D(t + k)/D(t). Thus

all discounting is measured from time 0, and the discounting that occurs between t and t + k is found

by comparing D(t + k), the discounting that occurs between 0 and t + k, to D(t), the discounting which

occurs between 0 and t.

We next define discount functions for four popular discounted utility models that we consider, and their

corresponding discount fractions. First, the standard exponential discount function (Samuelson, 1937)

assumes a constant rate of discounting in every period:

D(t) = δ
t ⇒ ∆(t,k) = δ

k (3)

Second, the quasi-hyperbolic discount function (Laibson, 1997; O’Donoghue and Rabin, 1999) extends

the exponential model to capture dynamic inconsistency by applying an additional fixed discount β ⩽ 1,

interpreted as present bias, to all rewards that are not available immediately:

D(t) =

1 t = 0

βδ t t > 0
⇒ ∆(t,k) =

βδ k t = 0

δ k t > 0
(4)

Next, the simple hyperbolic discount function (Mazur, 1984) is used in psychology to account for dimin-

ishing impatience (the finding that the rate of discounting decreases as the interval length increases):

D(t) =
1

1+αt
⇒ ∆(t,k) =

1+αt
1+α (t + k)

(5)

Finally, the generalised hyperbolic discount function (Loewenstein and Prelec, 1992) extends the simple

hyperbolic model by introducing an additional parameter to allow the discount function to decline more

or less rapidly than predicted by the simple hyperbolic model:1

1An equivalent specification is proposed by Myerson and Green (1995, equation 4). In this paper, we estimate the paramet-
risation proposed by Loewenstein and Prelec (1992).
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D(t) =
1

(1+αt)γ/α
⇒ ∆(t,k) =

(
1+αt

1+α (t + k)

)γ/α

(6)

From inspection of equations 3–6, it is clear that the exponential discount function is the only one for

which ∆(t,k) does not depend upon the front-end delay t. Indeed, within the framework of discounted

utility, the exponential model is the only one to have this property of stationarity.

2.2 Models of stationary relative discounting

Relative discounting generalises discounted utility because the discount fraction ∆(t,k) need not be

derived from a discount function, and may instead be treated as a primitive. We consider such models

because it turns out that our data satisfy stationarity, and we are interested in stationary models that are

not necessarily exponential. We thus restrict attention to models of stationary relative discounting in

which the discount fraction is a function of k but not t, in other words where the discounting that occurs

over an interval of length k does not depend on the timing of the onset of that interval, t.

We next define discount fractions for the four models of stationary relative discounting that we consider.

Each of these models is closely related to one of the discounted utility models defined in Section 2.2

above. First, the subadditive model proposed by Read (2001, equation 16) extends the discount fraction

for the exponential model in equation 3 by replacing k with a power transformation:

∆(t,k) = δ
kϑ

(7)

This model was proposed to accommodate the finding of subadditivity in discounting. One interpreta-

tion of the model is that the parameter ϑ captures non-linear time perception, such that discounting is

exponential with respect to the subjectively-perceived interval length, kϑ .

The remaining models are obtained by taking the discount functions in equations 4–6, originally defined

over time measured from 0, and recasting them as discount fractions defined directly over interval lengths

k. This amounts to a “shifting of the origin” such that instead of being measured from time 0, discounting

is measured from the start of the interval being discounted at time t.

Recasting the quasi-hyperbolic discount function from equation 4 in this manner produces the model that

we refer to as “quasi-exponential discounting” (QED):

∆(t,k) =

1 k = 0

βδ k k > 0
(8)

This has the interpretation that, in addition to long-run exponential discounting through δ , there is an

additional fixed penalty for waiting β that is applied to all episodes of delay (and not only ones that start

in the present, as in quasi-hyperbolic discounting).
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Next, recasting the simple hyperbolic discount function in equation 5 yields the “as soon as possible”

(ASAP) model proposed by Kable and Glimcher (2010, equation 3):

∆(t,k) =
1

1+αk
(9)

Finally, recasting the generalised hyperbolic discount function in equation 6 yields a model that we refer

to as “generalised ASAP”:

∆(t,k) =
1

(1+αk)γ/α
(10)

This is also a simplified (two-parameter) version of the “discounting by intervals” model of Scholten and

Read (2006), which has a total of four parameters.

3 Methodology

Our measurement of time preference consisted of 15 matching tasks. In each task, participants were

asked to state the amount which, if received on a specified sooner date, they would consider equally

desirable as receiving GBP £30 on a specified later date. Sooner rewards were offered with front-end

delays (t) of zero, one, or seven days from the date of the study. This variation in sooner reward dates

facilitates the identification of present bias and violations of stationarity. Later rewards were offered with

back-end delays (k) of seven, 14, 30, 90, or 180 days after the sooner date. Variation in back-end delay

lengths facilitates identification of the shape of long-run discounting. We crossed every combination of

the three front- and five back-end delay lengths to create a total of 15 items. The order in which these

items were presented was randomised at an individual level.

Figure 1 illustrates the presentation of a sample item. A stylised calendar was used to visualise the full

187-day timespan of the study, with the sooner and later reward dates for the current trial highlighted as

coloured boxes. In each trial, participants reported their sooner equivalent of the later £30 by placing

a marker on a slider. In its initial state the slider appeared without any marker being visible, such that

participants had to first click to make the marker appear, and then drag it to the desired position. The

sooner equivalent was displayed above the marker, and the value updated dynamically in response to

movements in its position. Participants could adjust the position of the marker without time limit, and

once satisfied with their choice submitted it by clicking “Next”. In the Instructions (see Appendix A),

the concept of a sooner equivalent was explained as an amount such that a participant would find it “very

hard to choose” between receiving the amount they specify sooner, or £30 later. In the task interface, this

was summarised using the prompt “To me, £____ in t days is as good as £30 in t + k days”.

To induce truthful reporting, if a participant was rewarded for one of these trials, the amount was determ-

ined using the Becker et al. (1964) mechanism. A random value z was drawn from a uniform distribution

between £0.10 and £30 (in increments of £0.10), representing the offer of a sooner amount, and this
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Figure 1: Interface for a sample time preference trial.

was compared to the participant’s response in the chosen trial. If z was greater than (or equal to) the

participant’s sooner equivalent, the participant received z on the sooner date; otherwise they received

£30 on the later date. Participants were instructed that it was in their best interest to report their prefer-

ences truthfully, and this was illustrated by means of an example showing how misreporting one’s sooner

equivalent could result in receiving a less desired reward.2

A total of 302 UK-resident participants (55.6% males; mean age 44.0 years, SD = 13.8) completed the

study, which was programmed in Qualtrics, online through Prolific (prolific.com) on the morning of 10

November 2023, GMT. To be eligible for the study, participants were required to be at least 18 years of

age, reside in the UK, and have an approval rating on Prolific of at least 95%. After giving informed

consent, participants were required to pass two attention checks before continuing. In addition to the

incentivised time preference and exponential growth items, participants completed an unincentivised

subjective time perception task (Bradford et al., 2019) which will be described in Section 4.4, the Cog-

nitive Reflection Test (Frederick, 2005), the Barratt Impulsiveness Scale - Brief (Steinberg et al., 2013),

the “Big five” financial literacy items (Lusardi, 2011), and exit questions covering clarity of the instruc-

tions and trust in payments. On a five-point Likert scale, 80% of participants rated the clarity of the

2In addition to the 15 time preference items, participants completed a block of 15 items measuring exponential growth
bias (Stango and Zinman, 2009) for a separate project, and the order of presentation of the two blocks was randomised at an
individual level. In exponential growth bias trials, participants were asked to estimate what amount they would need to deposit,
at a specified compound interest rate, to achieve a specified savings goal after some number of years. As well as receiving a flat
fee for completing the study, each participant had a one-in-ten chance to receive a bonus determined by their response to one
randomly-selected item, which could either be a time preference or exponential growth trial. Exponential growth items were
incentivised using a quadratic scoring rule, following Levy and Tasoff (2017).

8

http://prolific.com


instructions as four or above, while 79% reported their trust in the researchers to pay as described in the

instructions as four or above. The median time taken to complete the study as a whole was 29 minutes.

Each participant received base compensation of £4 in addition to a one-in-ten chance to receive a bonus

of up to £30 based on their choice in one randomly-selected trial. Sooner rewards for time preference

trials with no front-end delay were sent within 30 minutes of the final participant completing the study,

and within four hours of the first participant commencing.

4 Results

We set out our results as follows. Section 4.1 documents the absence of present bias in the aggregate.

While participants report lower sooner equivalents when later rewards have longer back-end delays,

there is no discernable response to the front-end delay. This indicates that a model that explains the data

should have the property of stationarity. Section 4.2 reports representative-agent estimates of discounted

utility. The standard exponential model is the only discounted utility model to exhibit stationarity, yet

it performs poorly as it struggles to explain choices at both short and long back-end delays. A quasi-

hyperbolic model offers added flexibility, but only for choices without front-end delay. We find that it

improves on the exponential model (as measured by BIC) and even detects highly-significant “present

bias” (β = 0.833, p< 0.001), despite there being no present bias in the data. From the class of discounted

utility models, the generalised hyperbolic function performs best, although it predicts greater patience

with increasing front-end delays, a pattern we do not see in our data.

Section 4.3 reports estimates of stationary relative discounting. The subadditive model of Read (2001)

and generalised ASAP (equation 10) are the joint best models, however our quasi-exponential model

provides an excellent approximation to these models. Section 4.4 introduces the subjective time percep-

tion data. We find that while time perception is indeed nonlinear, it cannot fully account for deviations

from exponential discounting. Finally, Section 4.5 examines which models explain choices best at an in-

dividual level, showing that the vast majority of individual participants are stationary but not exponential

(and thus violate discounted utility).

4.1 Absence of present bias

Figure 2 depicts participants’ mean sooner equivalents of a later £30 in each of the 15 trials, with lower

sooner equivalents indicating more impatient choices. The shading of bars is used to denote different

levels of front-end delay, while the bars are grouped by back-end delay and the error bars represent

±1 standard error of the mean. The figure shows that while participants respond as expected to back-

end delay – by assigning lower sooner equivalents to more delayed rewards – there is little aggregate

response to the front-end delay. If there is present bias in this data, the leftmost and darkest bar in each

group should be lower than the other two. Instead there is no such systematic pattern, and all differences

between the three levels of front-end delay are minor, as can be seen from the overlapping error bars.

9



Figure 2: Mean sooner equivalents, by front- and back-end delay length.
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To examine effects of front- and back-end delay on behaviour without committing to a specific model

of discounting, we conduct a two-way repeated-measures analysis of variance to examine the effects

of t (zero, one, and seven days) and k (seven, 14, 30, 90, and 180 days) as within-subjects factors on

participants’ sooner equivalents, with degrees of freedom corrected using Box’s conservative epsilon.

This reveals a significant main effect of back-end delay (F = 176.41, p < 0.0001), but no significant

main effect of front-end delay (F = 0.75, p = 0.3877). Moreover, there is also no significant interaction

between t and k (F = 0.26, p = 0.6086), confirming that the effect of back-end delay on participants’

sooner equivalents is similar at each level of the front-end delay. These findings indicate that the data

are best described by a model in which discounting is sensitive to the length of the interval over which a

reward is deferred (k), but not whether a sooner reward is available immediately or later (t).

4.2 Estimates of discounted utility

In this section we report representative agent estimates of the four models of discounted utility defined

in Section 2.1, pooling the data of all 302 participants. We assume a linear instantaneous utility function

v(x),3 and estimate the parameter(s) of each model by nonlinear least squares, with standard errors

3In the context of intertemporal choice, the curvature of instantaneous utility captures the preference of a decision-maker to
smooth reward streams over time. Therefore, to relax the assumption of linear utility requires a more complex design in which
participants make choices over bundles of rewards (delivered on both the sooner and later dates) that vary in the opportunities
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clustered at the level of individual participants. Table 1 reports point estimates and robust 95% confidence

intervals of the parameters for each of the discounted utility models defined in equations 3 to 6. Figure 3

plots the resulting predicted values for the discounted value of a delayed £30 as a function of back-end

delay on the horizontal axis, with each panel corresponding to a different level of the front-end delay.

The mean sooner equivalents and their standard errors are denoted by black markers.

We begin with the standard model of exponentially discounted utility. Since this model satisfies station-

arity, its predicted values are identical across all three panels of Figure 3. The estimated daily discount

factor of δ = 0.9962 corresponds to a daily discount rate of 0.38%, which in turn compounds to an

annualised discount rate of 302%. However, it can be seen in Figure 3 that the exponential function

greatly overstates the discounting of the longest back-end delay of 180 days: whereas the mean sooner

equivalent at 180 days is around £19, the prediction of the exponential model is closer to £15. The ex-

ponential function is thus both too flat to account for the initial sharp decline in sooner equivalents over

short intervals, and too steep to capture the flattening out that occurs at longer intervals. This highlights

the central theme of this section: there is no discounted utility model that simultaneously captures the

two most salient features of our data, namely stationarity and the shape of long-run discounting.

The model of quasi-hyperbolic discounted utility was proposed to capture the phenomenon of “present

bias”: steeper discounting specifically in the presence of a potentially immediate reward. The model

thus allows for more pronounced discounting in the left panel of Figure 3 (t = 0), but makes identical

predictions for both the centre (t = 1) and right (t = 7) panels. Of course, our data do not exhibit any

present bias, and we see very similar patterns of behaviour across all three panels. It is thus striking,

and quite unexpected, that we estimate highly significant “present bias”, with β = 0.833 and a 95%

confidence interval of (0.809,0.857). Moreover, the BIC value of the quasi-hyperbolic model improves

substantially upon that of the exponential model, as seen in the bottom row of Table 1.

The explanation for this remarkable finding can be seen from closer examination of Figure 3: the quasi-

hyperbolic present bias parameter β allows for a “decoupling” of the intercept of the fitted curve, better

describing choices at short back-end delays – but only in the left panel where there is no front-end

delay. At the same time, the estimate of β < 1 is accompanied by a larger estimate of δ (less long-

run discounting as compared to the exponential model), which better describes choices at longer back-

end delays in the centre and right panels where β is not activated. In short, whereas the parameter β

was intended to model the response to front-end delay (of which there is none), it actually functions to

describe the shape of long-run discounting. Given that behaviour is in fact similar across all three panels,

in Section 4.3 we estimate the quasi-exponential model in which β is allowed to act upon all choices,

both with and without front-end delay. We show that this further improves upon the quasi-hyperbolic

model, and in fact closely approximates our best-fitting models.

Finally, the models of simple hyperbolic and generalised hyperbolic discounted utility were proposed

to capture patterns of diminishing impatience (not limited to present bias) that are incompatible with

they offer for smoothing. The consensus from studies using such designs is that when measured in this way, the instantaneous
utility function is very close to linear, and moreover its curvature is quite distinct from that of a Bernoulli utility function
measured in the domain of risk (Andreoni and Sprenger, 2012; Abdellaoui et al., 2013; Cheung, 2020). In particular, Cheung
(2020) finds the effect upon estimated annual discount rates of adjusting for the curvature of instantaneous utility, as opposed
to simply imposing linear utility, to be little more than one percentage point, whereas the alternative of measuring utility in the
domain of risk results in a sizeable overcorrection.

11



Table 1: Estimates of discounted utility models

(3) (4) (5) (6)

Exponential
Quasi- Simple Generalised

hyperbolic hyperbolic hyperbolic

δ 0.9962 0.9968

(0.9958, 0.9966) (0.9964, 0.9971)

β 0.8330

(0.8093, 0.8567)

α 0.0058 0.4523

(0.0049, 0.0067) (0.3194, 0.5852)

γ 0.0631

(0.0451, 0.0812)

R2 0.8168 0.8267 0.8249 0.8515

BIC 2,749 2,504 2,542 1,805

Notes: All models are estimated by nonlinear least squares, using 4,530 observations from
302 participants. Column numbers correspond to equations in Section 2.1. Robust 95% con-
fidence intervals, with standard errors clustered at the participant level, are in parentheses.

Figure 3: Fitted models of discounted utility
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exponential discounting. These models make distinct predictions in each of the three panels of Figure 3

(although for the simple hyperbolic function the differences are slight). It can be seen that (as with the

exponential function), the shape of the simple hyperbolic function is too inflexible to describe choices at

both short and long back-end delays. The generalised hyperbolic function, which features an additional

curvature parameter, is found to be the best-fitting discounted utility model by a considerable margin.

However it fails to capture the other key feature of our data, namely stationarity. As can be seen by

comparing the panels of Figure 3, the model predicts more patient choices with increasing front-end

delay, a pattern not evident in our data.

4.3 Estimates of stationary relative discounting

Table 2 reports point estimates and robust 95% confidence intervals of the parameters (from standard

errors clustered at the level of individual participants) for each of the models of stationary relative dis-

counting defined in equations 7 to 10 of Section 2.2. Figure 4 plots the resulting predicted values for the

discounted value of a delayed £30, using the same format as for the discounted utility models in Figure

3. Since we restrict attention to relative discounting models that have the property of stationarity, each

of these models predicts an unchanged pattern of behaviour across all three panels of Figure 4. These

models thus allow discounting to be stationary without having the very particular shape of an exponential

discount function; however to do so it is necessary to relax the assumption of discounted utility.

It can be seen in Figure 4 that the single-parameter ASAP model of Kable and Glimcher (2010) performs

poorly because, as was the case for the exponential discount function, its shape is too inflexible to capture

the observed extent of diminishing impatience with increasing interval length. Moreover, comparing its

BIC in Table 2 to that of the corresponding model of discounted utility in Table 1 reveals no discernable

improvement. This is because the rather flat shape of the function at small values of k, combined with

our short front-end delays of one and seven days, implies that the effect of “shifting the origin” is quite

limited. By contrast, Kable and Glimcher (2010) first proposed ASAP in the context of a dataset in which

the front-end delay was 60 days, such that the effect of this shift is more pronounced.

The remaining models have two parameters, which suffice to capture the observed patterns of behaviour.

Comparing Tables 2 and 1, the BIC values of these models improve considerably upon any discounted

utility model. In particular, the subadditive model proposed by Read (2001) and generalised ASAP

are the joint best models: their predictions are essentially indistinguishable, and track the aggregate

behaviour closely. Moreover, generalised ASAP is the relative discounting counterpart to the best-fitting

discounted utility model. Comparing it to generalised hyperbolic discounted utility thus isolates the

effect of relaxing the assumption of discounted utility while holding the functional form constant.

Finally, the quasi-exponential model retains an underlying exponential shape which makes it less flexible

than either the subadditive or generalised ASAP models. To account for the steep discounting of shorter

intervals, this model instead imposes a fixed multiplicative penalty β for delay. To account for station-

arity, it applies this penalty to all instances of delay and not only ones that begin in the present – this is

what distinguishes it from quasi-hyperbolic discounted utility. The predictions of this model do not track

the data precisely, yet they clearly capture its essential qualitative features. As measured by the BIC, the
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Table 2: Estimates of stationary relative discounting models

(7) (8) (9) (10)

Subadditive
Quasi-

ASAP
Generalised

exponential ASAP

δ 0.8371 0.9988

(0.8058, 0.8684) (0.9986, 0.9991)

ϑ 0.1840

(0.1490, 0.2190)

β 0.7598

(0.7290, 0.7906)

α 0.0057 6.7079

(0.0049, 0.0066) (−0.3477, 13.7635)

γ 0.4297

(0.0368, 0.8226)

R2 0.8603 0.8599 0.8249 0.8603

BIC 1,528 1,542 2,542 1,529

Notes: All models are estimated by nonlinear least squares, using 4,530 observations from
302 participants. Column numbers correspond to equations in Section 2.2. Robust 95% con-
fidence intervals, with standard errors clustered at the participant level, are in parentheses.

Figure 4: Fitted models of stationary relative discounting
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cost of the quasi-exponential approximation relative to the best-fitting models is minor when compared

to the cost of incorrectly maintaining the assumption of discounted utility.

4.4 Subjective time perception

As noted in Section 2.2, one interpretation of the power parameter ϑ of subadditive discounting in equa-

tion 7 is in terms of nonlinear time perception: if people discount exponentially with respect to subjective

delay kϑ , they would behave as described by a subadditive model. It has similarly been argued that if

time perception follows a logarithmic relation then exponential discounting would generate behaviour

as described by the generalised hyperbolic function in equation 6 (Takahashi, 2005; Bradford et al.,

2019).4 If these conjectures are correct, accounting for subjective time perception would negate evid-

ence of non-exponential discounting, and re-establish exponentially discounted utility as the preferred

model (Zauberman et al., 2009; Bradford et al., 2019). In this section we introduce our measure of time

perception to examine whether this is indeed the case.

Our unincentivised self-report measure of time perception was based on that of Bradford et al. (2019).

In each trial of this task, participants were asked to place a marker on a slider to indicate how near or far

in the future they perceived different dates to be. The dates were presented in random order, with each

shown on a separate screen, and participants knew in advance that they would vary from seven days to 25

years in the future.5 The left-most end of the scale was labelled “Very near” and the right-most end “Very

far”. There were no other values identified on the scale, and initially no marker was visible. Responses

were coded on a linear scale from one to 100, however these values were not visible to participants.

Following Bradford et al. (2019), we account for individual differences in the propensity to make use of

the full width of the scale by assuming that each participant has an objective perception of the shortest

presented interval (in our case, seven days). For intervals longer than seven days, we divide each parti-

cipant’s reported perception of that interval by their own reported perception of the seven-day interval,

and multiply this normalised value by seven to express it in units of subjectively-perceived days. Thus,

letting s(k) denote the value between one and 100 coded in response to an interval of length k, we define

the subjectively-perceived length of that interval in days, κ (k), as:

κ (k) =
7s(k)
s(7)

(11)

Figure 5 reports the means of κ (k) and their standard errors for interval lengths up to 180 days. The

dashed diagonal corresponds to an objective perception of time, while the curves represent fitted values of

the Weber-Fechner (logarithmic) and Stevens’ power laws, in each case normalised such that the shortest

interval of seven days is objectively perceived. It can be seen that time perception is nonlinear and

4In psychophysics, a logarithmic relation between a stimulus and its perception is known as the Weber-Fechner law, while
a power relation is known as Stevens’ power law.

525 years was the longest investment horizon considered in the exponential growth bias trials. For this paper, we only
analyse the responses recorded for intervals from seven to 180 days in length.
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concave: the 180-day interval is on average perceived as 87 subjective days in length, and the estimated

value of the Stevens’ power law parameter is 0.791, with 95% confidence interval (0.754,0.828).6

While time perception is indeed nonlinear, it cannot fully account for the deviations from exponential

discounting we observe in our data. To see this, note firstly that the estimated power parameter ϑ = 0.184

for the subadditive model in Table 2 is substantially smaller than the estimated parameter of Stevens’

power law. In other words, if ϑ is interpreted as reflecting the effect of time perception then the amount

of time compression required to explain behaviour in the discounting task is much greater than what is

implied by participants’ responses to the time perception task.

Secondly, Table 3 reports estimates of the exponential, subadditive and quasi-exponential models in

terms of subjective time, in which the objective interval lengths k are simply replaced by the participant-

specific values of κ (k) as defined by equation 11. Thus note that these estimates do not impose the

functional form of either the Weber-Fechner or Stevens’ power laws, nor do they rely upon the fitted

curves in Figure 5. The estimates reveal that the non-exponential components of the subadditive and

quasi-exponential models (respectively, ϑ and β ) remain significantly smaller than the value of one at

which these models reduce to exponential discounting. Moreover, both models improve substantially

upon the exponential model as measured by the BIC. Thus our data do not support the proposition that

deviations from exponential discounting can be fully explained by a nonlinear perception of time.

4.5 Individual-level estimates

In this Section, we estimate a selection of models at an individual level and use the estimates to identify

the proportions of participants whose behaviour is best described by different classes of discounting

models. In our sample of 302 participants, there are seven who report sooner equivalents of zero in all

15 trials (and would thus accept any BDM offer of a sooner amount) and ten who always report 30 (and

would thus reject any offer in favour of a later £30); these 17 participants thus exhibit no variation in

their responses. We are able to estimate models at an individual level for the remaining 285 participants.

We report individual estimates for two discounted utility models and two models of stationary relative

discounting. These are the standard exponential model (equation 3), the quasi-hyperbolic model popular

in behavioural economics (equation 4), the model of subadditive discounting as the best-performing

aggregate model (equation 7), and our quasi-exponential model that provides a simple approximation to

the best-fitting models (equation 8). Since each of these models is built upon the underlying foundation of

an exponential function, the exercise can be interpreted as exploring which extensions of the exponential

form best describe discounting behaviour at an individual level.

Table 4 reports summary statistics of individual estimates of the parameters of each of these models. The

median estimate of the quasi-hyperbolic β parameter is 0.9345, indicating only slight present bias: there

are 23 participants (8% of the individual estimation sample) for whom the quasi-hyperbolic β differs

6For comparison, Bradford et al. (2019, Figure 2) find that a six-month interval is perceived to be around 95 subjective
days in length. Figure 5 also shows that the 14 and 30 day intervals are very slightly overweighted, however this tendency is
considerably less pronounced than in Bradford et al. (2019).
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Figure 5: Subjective perceptions of time
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Table 3: Discounting in subjective time

(3) (7) (8)

Exponential Subadditive
Quasi-

exponential

δ 0.9938 0.7699 0.9993

(0.9929, 0.9948) (0.7127, 0.8272) (0.9989, 0.9998)

ϑ 0.0918

(0.0189, 0.1647)

β 0.7259

(0.6928, 0.7590)

R2 0.7897 0.8565 0.8567

BIC 3373 1651 1644

Notes: All models are estimated by nonlinear least squares, using 4,530 observations from
302 participants. Column numbers correspond to equations in Sections 2.1 and 2.2. Ro-
bust 95% confidence intervals, with standard errors clustered at the participant level, are in
parentheses.
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significantly from 1 at the 5% level. Our quasi-exponential model instead applies β to all episodes of

delay and not only ones that begin in the present. The median estimate of this quasi-exponential β is

0.8753, and there are 218 participants (76%) for whom it differs significantly from 1.

Figure 6 reports the proportions of participants whose choices are best explained by each of the models,

as selected by the BIC of their individual model estimates. There are 171 participants (61% of the

individual estimation sample) whose choices are best described by a subadditive model, 71 (25%) for

whom the quasi-exponential model is best, and 35 (12%) for whom the standard exponential model is

best. Quite remarkably, there are only 6 individuals (2%) whose choices are best described by the model

of present-biased quasi-hyperbolic discounted utility. These findings highlight that the vast majority of

individuals exhibit stationarity, despite the fact that only a minority of them are best described by the

exponential model that is the only stationary model of discounted utility.

5 Discussion

Our first finding is that the behaviour of our participants is stationary. Indeed, not only is aggregate

behaviour stationary, so too are the choices of the vast majority of individuals. Since stationarity is a form

of consistency, a potential concern is that this might not reflect time preference but rather a preference for

consistency in responding to choice stimuli. We think this unlikely for two reasons. First, our interface

(Figure 1) presents temporal trade-offs directly in terms of days until the sooner and later reward dates,

and does not spell out the back-end delay k. For example, participants face one trial involving rewards

today and in 14 days, and another involving rewards in seven and in 21 days. As such, it is not clear

that a participant who wishes to respond consistently “ought to” exhibit stationarity by giving the same

response in both trials. Second, since we present trials in a random order, this further complicates the

task of deliberately responding in a consistent (and thus stationary) manner.

Within the framework of discounted utility, stationarity is synonymous with an exponential discount

function. Our next finding is that exponential discounting describes the data poorly. As measured by

BIC, it is the worst-performing model of discounted utility in Table 1. Thus, evidence of stationarity

should not automatically be taken as support for exponential discounting. This point bears reiterating:

the exponential model performs worse, in explaining a stationary dataset, than alternatives originally

put forward to characterise non-stationarity. This is because non-exponential discount functions (such

as the generalised hyperbola of Loewenstein and Prelec, 1992) better describe the shape of long-run

discounting, despite failing to capture the property of stationarity. These are two distinct features of our

data, and there is no discounted utility model that can simultaneously account for both. The tension

arises from our use of extensive variation in back-end delays: by focusing on designs with more limited

variation in k, researchers in economics may neglect, or even turn a blind eye to, this point.

As a particularly striking illustration of these concerns, we report a spurious estimate of quasi-hyperbolic

“present bias”, despite there being no present bias in the data. We emphasise that the magnitude of this

estimate: β = 0.833 with 95% confidence interval (0.809,0.857), smaller than 1 with p < 0.0001, is

entirely plausible and in line with the amount of present bias that a behavioural economist would find
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Table 4: Individual-level estimates of discounting parameters

p10 p25 p50 p75 p90

Exponential, δ 0.9304 0.9927 0.9971 0.9987 0.9995

Quasi-hyperbolic, δ 0.9459 0.9934 0.9975 0.9989 0.9996

Quasi-hyperbolic, β 0.6515 0.8119 0.9345 0.9896 1.0061

Subadditive, δ 0.3341 0.7020 0.9395 0.9893 0.9979

Subadditive, ϑ −0.1374 0.1287 0.3495 0.6476 0.9286

Quasi-exponential, δ 0.9948 0.9972 0.9989 0.9997 1.0012

Quasi-exponential, β 0.3933 0.6530 0.8753 0.9708 0.9986

Figure 6: Best-fitting individual models

Subadditive
Quasi-exponential
Exponential
Quasi-hyperbolic
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reasonable. However, as discussed in Section 4.2, it is found because, in the absence of actual present

bias, the estimate of β instead models the non-exponential shape of long-run discounting.

We highlight two key methodological lessons from this finding. The first is the importance of performing

model-free descriptive analysis and visualisation of the data, as reported in Section 4.1, before proceed-

ing to structural modelling. Second, we would argue that behavioural economists should be more modest

in claiming to be able to “identify” model parameters through experimental design. An oft-repeated as-

sertion in the literature is that estimates of the quasi-hyperbolic present bias parameter β are “identified”

by exogenous variation in the front-end delay. Our result illustrates how such claims may be misleading:

our estimate of β = 0.833 is well-identified in this sense, yet it would be fallacious to interpret it as evid-

ence of “present bias”. By contrast, our estimate of the β parameter in QED is identified by assumption

of the functional form. Nonetheless, we would argue that the latter model represents, both empirically

and descriptively, a more accurate interpretation of behaviour.

The bulk of empirical research generalising the standard model of discounting focuses on relaxing the

assumption of an exponential discount function. By contrast, in order to account for both stationarity

and the shape of long-run discounting, we find it is necessary to relax discounted utility itself, invoking

a relative discounting framework in which discounting is measured from time t instead of time 0. For

our purposes, relative discounting allows us to explore models that are stationary yet not exponential.

Models of relative discounting have also been proposed to account for the finding of subadditivity, which

is similarly incompatible with any model of discounted utility (Read, 2001).

Of course, this added flexibility comes at a cost: because there is no single discount function that governs

all temporal trade-offs, relative discounting models admit violations of transitivity, albeit only ones in-

duced by the passage of time (Ok and Masatlioglu, 2007). Since the axioms of relative discounting entail

that static preferences over outcomes are transitive (and indeed stable over time), any non-transitivity

must arise solely from the treatment of time. For example, Ok and Masatlioglu (2007), outline an applic-

ation of their framework to an alternating-offers bargaining game. They posit that an individual may be

indifferent between an immediate agreement and a short delay, yet strictly prefer the immediate agree-

ment to a sequence of such short delays. They consider such preferences to be descriptively plausible,

and contend that a theory of discounting ought to be flexible enough to accommodate them.

Our results raise the question of why decision-makers would encode delay in relative terms. We spec-

ulate that this may be attributable to efficient-coding mechanisms, similar to those that shape the utility

function (see Glimcher, 2022, for a review). Given that our brains encode value with limited precision,

they likely utilise a relative coding specific to the current decision context. Applying a single discount

function across all contexts would, in a noisy brain, make it harder to discriminate between alternatives

within any given context, and increase the likelihood of error. While economists have not traditionally

thought about discounting in terms of noisy perception, our main findings – that discounting is stationary

yet non-exponential – are broadly consistent with the model set out in Vieider (2021).

Our final contribution is to propose QED as a simple and intuitive model of stationary relative discount-

ing. QED relaxes discounted utility in an analogous manner to how quasi-hyperbolic discounting relaxes

the discount function. Whereas quasi-hyperbolic discounting applies β specifically in the presence of
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an immediate reward (and is thus a non-stationary model of discounted utility), QED applies β to all

instances of delay (and is thus a stationary model of “non-discounted utility”). Although QED does not

quite match the explanatory power of the best-fitting models, we find that the cost of the approximation

is minor compared to that of any model of discounted utility. At the same time, QED enjoys certain

attractions over its more flexible counterparts, foremost among which are the intuitive ease of interpret-

ation and analytical tractability that it shares with exponential and quasi-hyperbolic discounted utility.

Indeed, QED may be the simplest and most parsimonious model yet proposed that can account for sub-

additive discounting. We hope that in future it may prove useful not only in empirical research, but also

in theoretical work exploring the behavioural implications of moving beyond discounted utility.
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A Instructions for the delay discounting task

In this Section, we will ask fifteen questions. Each question involves two dates; these dates will vary

from one question to the next.

In each question you will tell us what amount of money, if paid on the sooner date, would be equally
desirable to you as receiving £30 on the later date.

In answering these questions, you can think about an amount that would make it very hard for you to

choose between receiving the amount you tell us sooner or waiting to receive £30 later. Because the

sooner and later dates vary, your answers will probably also vary from one question to the next.

Since everyone has different preferences, there are no wrong answers. However, you should think
carefully about your answers and report them truthfully. Otherwise, if one of these questions is

chosen for payment, you might miss out on a payment you would prefer more.

Remember you have one chance in ten to receive a bonus payment determined by one randomly selected

question from Sections I and II. Depending on which question is selected, and your response to that

question, you may receive a bonus payment as soon as today, or as late as in 187 days time. If you

are selected for a bonus payment, we will message you with the outcome later today.

If a question from this Section is selected for payment, we will draw a random value £X between £0.10

and £30 (in steps of £0.10) and compare it to your answer for that question. (All values of £X between

£0.10 and £30 are equally likely to be chosen.)

• If £X is greater than (or equal to) your answer, you would receive £X on the sooner date.

• If £X is smaller than your answer, you would have to wait to receive £30 on the later date.

While this may sound confusing, what you need to know is that it is always best to report truthfully the

sooner amount you feel is equally desirable as receiving £30 later. Otherwise, you may end up getting
a payment you prefer less.
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Example:

Suppose we asked you what amount, in 10 days, would be equally desirable to you as receiving £30 in

50 days. Let’s say you feel the true answer is £22.50.

• Suppose you report truthfully. Then if the random value of £X is chosen as £23.70 (which is better

than £22.50), you would receive £23.70 in 10 days.

• Suppose instead you misreport by stating an amount larger than your true answer, let’s say £25.

Then if £X is chosen as £23.70 (which is worse than £25), you would have to wait to receive £30

in 50 days instead. Since you actually feel that £30 in 50 days is only as good as £22.50 in 10

days, you would be better off reporting truthfully and getting £23.70 in 10 days.

This example shows how it is not in your interest to overreport the sooner amount you feel is equally

desirable as £30 later. It can be shown that it is not in your interest to underreport as well.

In short, you have the best chance of receiving a bonus payment you prefer the most if you think carefully

about the amount of money on the sooner date you feel is equally desirable as receiving £30 on the later

date, and reporting it truthfully.

Also, since you won’t know until later if one of your answers is chosen for payment, you should think

carefully about all of them, treating each one as though it counted for payment.

To enter your answers, click on the line that appears below each question, then drag the slider until you

are happy with the value shown. After you click Next, you will not be able to revise your answer.
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