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Abstract  36 
The Divisive Normalization (DN) function has been described as a “canonical neural computation” in the 37 
brain that achieves efficient representations of sensory and choice stimuli. Recent theoretical work indicates 38 
that it efficiently encodes a specific class of Pareto-distributed stimuli. Does the brain shift to different 39 
encoding functions in other types of environments, or is there evidence for DN encoding in other types of 40 
environments? In this paper, using a within-subject choice experiment, we show evidence of the latter. Our 41 
subjects made decisions in two distinct choice environments with choice sets either drawn from a Pareto 42 
distribution or from a uniform distribution. Our results indicate that subjects’ choices are better described 43 
by a divisive coding strategy in both environments. Moreover, subjects appeared to calibrate a DN function 44 
to match, as closely as possible, the actual statistical properties of each environment. These results suggest 45 
that the nervous system may be constrained to use divisive representations under all conditions.  46 
 47 
 48 
Significance Statement  49 
How does the frequency with which we encounter different kinds of decision problems affect how the brain 50 
represents those problems? Recent empirical findings suggest that we adapt our internal representations 51 
to match the environments in which we are making choices. Theoretical work has shown that one form of 52 
internal representation, called divisive normalization, provides an optimal adaptation when making choices 53 
in a specific class of environments. Using a stylized experimental design, subjects faced two distinct choice 54 
environments, each characterized by different statistical properties. Our findings show humans appear to 55 
use the same mechanism in both environments, suggesting that a divisive representation may be a fixed 56 
feature of human cognition.  57 
 58 

59 
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Introduction 60 
We make some decisions more often than others – in dozens of instances during our life we choose 61 
between having a pizza or a burger for dinner, but rarely have to indicate which of the two-starred Michelin 62 
restaurants we prefer. An often overlooked fact is that these encounter frequencies play a critical role in 63 
defining efficient encoding strategies – given constraints on neural coding, more accurate encoding must 64 
generally be allocated to more frequently encountered stimuli (1, 2). Indeed, experimental studies confirm 65 
this theoretical insight, showing a dependency of preference orderings, choice patterns (3–7), and choice 66 
efficiency (3, 8) on the frequency with which subjects encounter different rewards. 67 

This has led to the conclusion that during the decision process, the brain adheres to principles of 68 
efficient coding, economizing the allocation of resources to optimize decision outcomes (3, 8–13). A 69 
canonical example of a well-studied efficient code (13, 14) is Divisive Normalization (henceforth DN) (15), 70 
which has been related to neuronal firing rates across all sensory modalities (16–19) and across various 71 
cognitive domains as well (20). The DN function enables a system with limited information capacity to 72 
employ a flexible and scale-invariant encoding of naturally occurring stimuli that is sensitive to encounter 73 
frequency (17, 21, 22). Ample evidence has supported the notion that DN is also highly predictive of reward 74 
value encoding in the human and animal choice mechanism (6, 7, 23–25).  75 

At least one form of DN has been shown to be an efficient code for stimuli with a probability of 76 
occurrence that is described by a Pareto Type III distribution (26). This prompts the question of whether the 77 
brain employs non-DN encoding functions when the statistical properties of the input stimuli (in our case, 78 
choice environments) are not Pareto-distributed. Would we expect to find evidence of divisive encoding 79 
mechanisms (13) – like cross-normalized DN (26) –  only in Pareto-distributed environments? The latter 80 
might imply that previous documentation of DN encoding mechanisms may say more about the antecedent 81 
stimulus distributions used in experiments than about constraints on encoding mechanisms. An alternative 82 
hypothesis, however, is that our brains are constrained to employ DN-like encoding mechanisms (13). Such 83 
a constraint might reflect an adaptation of the nervous system to Pareto-distributed real-world natural 84 
stimuli, such as the sensory (14, 18, 27) and ecological (28, 29) environments we typically encounter.  85 

In this study, we present our subjects with a binary-choice task in two environments characterized 86 
by different reward distributions. In one environment, valuations are Pareto-III-distributed and hence at least 87 
some DN functions are efficient (13, 26). In the other, valuations are uniformly distributed. In such an 88 
environment, a DN encoder would not represent the environment most efficiently (26) (Figure 1A). We test 89 
hypotheses about our subjects’ value encoding functions by fitting the patterns of errors in their choices 90 
with two random utility models (henceforth, RUM) (30, 31). The first one is a function that captures the key 91 
features of the family of DN models (32, 33). The second is a RUM with a power utility function that is the 92 
standard model in economic research and lies outside the DN family1 (henceforth, power utility; Figure 1B). 93 
We test our data to determine which model, divisive or non-divisive, better describes subjects’ choices in 94 

 
1 We note that the flexible power utility model nests within its parameterization a linear, a concave, and convex 

encoder. 
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each environment. We use a generalized form of DN to examine whether subjects are better described as 95 
obligate-DN choosers who use DN in both environments, or alternatively, that subjects’ choices are better 96 
be described with our DN function in one environment and with a power utility function in the other (Figure 97 
1C).  98 

In line with theory (13, 26), we find that in a Pareto-distributed environment, subjects employ an 99 
encoding of values that is well modeled by DN. We also find that the DN model better captures subjects’ 100 
choices in the uniformly-distributed environment. This suggests that subjects’ choices are more accurately 101 
described by divisive encoders, like those found in DN models, than by standard power utility functions. We 102 
find further evidence for context dependency in subjects’ choices as within the constraints of DN encoding, 103 
they adapt their reward expectations according to changes in the specific statistical properties of the choice 104 
environment.  105 

Taken together, our results suggest that divisive mechanisms may be an obligate component of 106 
the encoding mechanism used during the choice process. The current study focuses on decision making 107 
processes, but given the dominance of DN representations across cortical systems, our findings may be of 108 
general interest to the study of encoding mechanisms in sensory and other cognitive domains.  109 
 110 

 111 

[Insert Fig. 1 here]  112 
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Results 113 
 114 
Two-Stage Task Design 115 
 116 
Seventy-six subjects completed a two-stage choice task. In STAGE I (Fig. 2A left panel), subjects reported 117 
their valuations (willingness to pay) for 33 50-50 lotteries that pay either 𝑦! or 𝑦" dollars (see Table S1 for 118 
a complete lottery list). These valuations were used to estimate, for every subject 𝑖, their STAGE I subjective 119 
value function,	𝑢# = 0.5𝑦!

$! + 0.5𝑦"
$!, using a standard non-linear least squares (NLS) estimation. The 120 

subjective value function curvature (𝜌#) varied substantially from subject to subject (Fig. 2E). Using 121 
individual 𝜌# estimates, we generated subject-specific distributions of rewards in terms of their subjective – 122 
rather than dollar – values for the STAGE II task (Fig. 2B). This first step was critical. It allowed us to perform 123 
all our analyses in the domain of subjective value, removing simple utility curvature from our primary 124 
analyses and allowing us to create individualized choice sets with specific distributional properties that were 125 
essential for our design. Without this transformation, small subject-specific differences in utility curvature 126 
(risk attitudes) would have made the construction of probative choice sets required for the experiment 127 
impossible. 128 

In STAGE II, on two separate days, subjects made binary choices between 50-50 lotteries (Fig. 2A, 129 
right panel), with 320 decisions on each day. We created two choice environments: on one day, subjects 130 
were choosing between lotteries with subjective values drawn from a Pareto Type III distribution, for which 131 
DN has been proven to be an efficient encoder (henceforth, Pareto), and on the other day between lotteries 132 
with subjective values drawn from a uniform distribution for which DN has been shown to not be an efficient 133 
encoder (26). Subjects encountered each distributional environment on a different day (counter-balanced 134 
across subjects) to avoid contextual spillovers.  135 

Using these risky-choice lotteries, rather than choices over consumer goods, enabled us to 136 
generate continuous distributions of valuations for STAGE II and to fully control their distributional shape. 137 
As noted above, our decision to generate the distributions of STAGE II lotteries in subjective value space, 138 
rather than in dollar space, aimed to control for the heterogeneity in subjects’ subjective valuations of 139 
lotteries (risk attitudes, Fig. 2E and Table S2). If, instead, we had created these distributions based on the 140 
dollar amounts, then for most subjects (all those with a non-linear subjective value function, i.e. 𝜌# ≠ 1) 141 
STAGE II choice sets would have not corresponded to uniform or Pareto type III distributions due to the 142 
heterogeneity in their subjective valuation of monetary lotteries. Our two-stage procedure thus ensured that 143 
for all subjects the environments had the same distributional shape – enabling us to assess the effect of 144 
the distributional properties of the two choice environments, while fully controlling for individual differences 145 
in preferences.   146 

Across subjects, we fixed the first moment (mean) of valuations and the range of monetary payoffs 147 
in both environments. Naturally, the second moment (standard deviation) of the uniform distribution was 148 
also fixed across subjects. The second moment of the Pareto distribution (as measured in dollars) varied 149 
by subjects’ subjective valuations of money as assessed in STAGE I (risk attitudes) (Fig. 2C, Fig. S1). 150 
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Accordingly, this heterogeneity also varied the distributions of the high and low monetary payoffs in each 151 
lottery (Fig. S1). To ensure that we fully captured each distributional environment, we matched the mean 152 
and standard deviation of the choice sets with those of larger sets of 100k draws (Fig. 2D). See Materials 153 
and Methods for further details on our sampling design.  154 

Overall, subjects appeared to pay careful attention during the study – only six subjects in the 155 
uniform environment, and nineteen subjects in the Pareto environment failed to choose the higher 156 
subjective value lottery in more than 20% of trials (Fig. S2A). Respectively, on average, subjects violated 157 
first-order stochastic dominance in 0.97% of trials in the uniform treatment and in 1.08% of trials in the 158 
Pareto treatment (Fig. S2B). Note that a higher incidence of mistakes in the Pareto environment is expected 159 
– as due to the correlational structure across lotteries, the value difference between lotteries was (on 160 
average) smaller and thus choices were harder in the Pareto environment (34).  161 
 162 

 163 

[Insert Figure 2 here] 164 

 165 

 166 

Distributional Properties of the Choice Environments Influence Subjects’ Choice Behavior 167 
 168 
Our overarching goal was to study how the distributional properties of the choice environment influenced 169 
the encoding of value, and whether subjects could flexibly switch between different types of encoding 170 
mechanisms, as evidenced by errors in their choice patterns, in different environments. We created the 171 
experimental choice environments with Pareto Type III and uniform distributions of valuations. In this 172 
section, we tackle the first part of our research question in a model-free manner, determining whether the 173 
distributional structure influenced the errors produced by our subjects in a meaningful manner.  174 

It is useful to introduce our hypotheses using an illustration. In Fig. 3A-B, we indicate the probability of 175 
choosing lottery 1 with valuation 𝑢!, given the coupling of the (𝑢!, 𝑢") valuations in a choice set. Choices 176 
along the diagonal represent trials in which the two lotteries had the same or very similar valuations, 177 
whereas trials that are away from the diagonal correspond to choice sets in which the two lotteries’ 178 
valuations were substantially different. A central feature of DN is the calibration of the function to the input 179 
stimuli. That is, resources are allocated to the range of stimuli most likely to be observed (tuning) (15, 25). 180 
Thus, compared to non-divisive encoders, if DN governs the choice mechanism in a Pareto environment, 181 
we would expect that in this environment subjects would make more mistakes in choice sets with elements 182 
away from the high-density center of the main diagonal, because these choices are less frequent. 183 
Conversely, we also expect that subjects in the Pareto environment would make fewer mistakes in choices 184 
whose valuations lie near the main diagonal because these near-equivalued choices occur more frequently. 185 
We find both patterns in our data. 186 
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To statistically test whether the frequency of mistakes increased faster as choice sets moved away 187 
from the main diagonal in the Pareto environment than in the uniform environment, we ran a probit 188 
regression with an indicator dependent variable equal to one for trials on which a subject selected the option 189 
with higher SV, and equal to zero otherwise. We controlled for the difference in difficulty across the trials 190 
by including the absolute value difference between the lottery valuations (|𝑢! − 𝑢"|) and for the general 191 
impact of the distribution by including a dummy for the Pareto distribution. The different rate of mistakes 192 
depending on the distance from the diagonal in each environment are captured by a significant coefficient 193 
on the interaction of Pareto dummy and (|𝑢! − 𝑢"|) (Column (1) in Table 1). As expected, we found that 194 
choice accuracies increased with an increase in the subjective value distance between the two options, and 195 
that moving from the uniform distribution to the Pareto distribution reduced accuracy (see also discussion 196 
in the previous section). Importantly, in line with our hypothesis, we found a negative and significant 197 
interaction term, indicating that relative to the uniform distribution, in the Pareto distribution, subjects were 198 
more likely to make errors once encountering choice sets further away from the diagonal, those sets that 199 
they experienced less often in the Pareto environment. We can thus conclude that encounter frequency as 200 
defined by the Pareto distributional structure did influence choice accuracy. 201 

To examine whether subjects calibrated their encoding function to the most frequently presented choice 202 
sets, we tested if they made fewer mistakes around the high-density center of the main diagonal in the 203 
Pareto environment. We ran a complementary probit regression focusing on twenty-two valuation bins from 204 
the center of the distributions presented in Fig. 3A-B (out of an equally-spaced 40-bin space), which 205 
corresponded to lotteries with $9-42 payoffs2 (Column (2) in Table 1). In addition to the regressors used in 206 
the model above, we included a dummy variable that indicated whether a lottery was taken from around 207 
the diagonal of the valuation space, as well as its interaction with the Pareto distribution dummy. We defined 208 
lotteries as laying around the diagonal if the ratio between the two valuations was 0.9 < %"

%#
< 1.1. 209 

Not surprisingly, choice accuracy was lower in choice sets around the diagonal, since these 210 
represented the most difficult choices in the experiment with the smallest SV difference. Crucially though, 211 
we found a positive interaction term between the diagonal and Pareto dummies, suggesting that relative to 212 
the uniform environment, in the Pareto environment, subjects had higher accuracy in those particularly 213 
difficult trials within the highly sampled region. Our results remained robust for other definitions of the center 214 
of the distribution and around the diagonal (Table S3).  215 

Together, these results suggest that in the Pareto environment subjects adjusted their value encoding 216 
to increase choice accuracy rates at the center of the joint distribution, at the expense of the decreased 217 
choice accuracy at the margins. This is evidence for a divisive form of value encoding, where choice 218 
discriminability is the highest near the mode of the distribution (see Fig. 1B).  219 

 
2 The center (medians) of the distributions depended on subjects’ subjective valuation of dollar amounts (𝜌 

parameter). In the Pareto distribution, the smallest median was $11.45 and the highest was $33.58. Likewise, in the 
uniform distribution, the smallest median was $22.85 and the highest was $41.53. Thus, determining a range of $9-42 
included the distributions’ centers for all the subjects in our sample. See Table S3 for an alternative definition that 
included a smaller range.  



 8 

 220 

 221 

[Insert Table 1here] 222 

 223 

 224 

Evidence for DN-like Value Encoding Across Choice Environments  225 

The findings in the previous section provided initial evidence that subjects adapted to the distribution of 226 
valuations and that subjects used divisive encoding in the Pareto environment. Our next goal was to 227 
evaluate whether subjects used the same or different encoding mechanisms in each of the two 228 
environments. To answer this question, we tested which model, a generalized form of divisive normalization 229 
(DN) or power utility, better captures subjects’ choices. We picked this DN model because it is regarded as 230 
a canonical encoding mechanism in the brain (15–17, 19), including in the choice domain (7, 24, 25, 33). 231 
Crucially, the DN model has been considered an efficient encoder (1, 9, 13, 35), as at least one variant of 232 
the DN model has been proven to efficiently encode Pareto distributed environments (26). We thus 233 
expected some form of DN encoding in this environment. In the DN model, subject 𝑖’s STAGE II subjective 234 
value function of a lottery 𝑘 ∈ {1,2} with payoffs 𝑥!,' or 𝑥",' is given by: 235 

(i) 𝑆#,' = 	0.5 (%!()#,%))&! 		

(%!()#,%))
&!,-!

&! + 0.5
(%!()",%))&! 		

(%!()",%))
&!,-!

&! +	𝜀#  236 

where 𝛼# is the function’s curvature, 𝑢#(∙) is subject 𝑖's STAGE I valuation (𝜌#), 𝑀 is the reward expectation, 237 
and 𝜀# is an additive decision noise drawn in each trial from a zero-mean normal distribution, such that 238 
𝜀#~𝑁(0, 𝜃./).  239 

The second model we examined was the commonly used power utility model (36):  240 

(ii) 𝑅#,' = 0.5C𝑢#(𝑥!,')D
0! + 0.5C𝑢#(𝑥",')D

0! + 𝜂# 241 

The model has one free parameter (𝑟), which captures the function’s curvature. When 𝑟 = 1, the 242 
function is linear. Similarly to our DN model, here, too, we included an additive decision noise 𝜂#~𝑁(0, 𝜃1).  243 

For every subject, we estimated both models using maximum likelihood estimation (see Materials and 244 
Methods). The subject-specific recovered parameters are reported in Table S4, and the sample medians 245 
are in Table 2. To determine, at the population level, which model better captured subjects’ choice patterns 246 
in each environment, we compared each subject’s Bayesian Information Criterion (BIC) scores across the 247 
two models in each environment3.  248 

 
3 Options in the uniform environment had on average higher value difference, thus responses in this environment 

were more accurate (Fig. S2) and less noisy (Fig. S3). Therefore, we only compare BIC scores of the two models within 
the same environment, and do not compare the models across the two environments. 
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In line with our hypothesis, we found that in the Pareto environment, subjects’ BIC scores were on 249 
average significantly lower, indicating a better model fit, for the DN model than for the power utility model 250 
(Fig. 3C, one-sided Wilcoxon sign-rank test, Z=4.4603, p<0.0001). This was true for 48 subjects (out of 76). 251 
In the uniform environment, we expected that a model that does not belong to the family of DN models 252 
would better fit the data. Instead, we found that again the BIC scores were on average significantly lower 253 
for the DN model (Fig. 3D, one-sided Wilcoxon sign-rank test, Z=2.9692, p=0.0015) and this held for 42 254 
(out of 76) subjects. Moreover, for only four subjects the curvature parameter in the power utility model was 255 
estimated as linear or as almost linear (𝑟 = 1 ± 0.05). The mean and median 𝑟 estimates were 0.608 and 256 
0.366, respectively. Importantly, the asymmetrical distributions of the differences in BIC scores (see insets 257 
in Fig. 3C-D) indicate that while for most subjects both models do (almost) equally well, there is a group of 258 
subjects for whom the DN model predicts their choices much better (DBIC>20 for 29 subjects in Pareto and 259 
18 subjects in uniform).  260 

To further compare the two models, we estimated them on the sample level. Table S5 presents the 261 
recovered pooled estimates from this analysis. Note that this analysis could only be done in dollar-space 262 
to allow comparability of lotteries across subjects, and to recover meaningful estimates of the M parameter 263 
in the DN model. Here, too, we find that the DN model captured subjects’ choices better, evident by the 264 
lower BIC scores when aggregating choices from both treatments (leftmost column), as well as within each 265 
environment (second and third columns). These results should be interpreted cautiously since the reward 266 
distributions were not fully controlled in the dollar space (Fig. S1).  267 

Another way to examine the effect of the distributional environment on subjects’ value-encoding – and 268 
validate our task design – is to examine the relationship between the estimates of subjects’ subjective 269 
valuations of lotteries in STAGE I (𝜌# , see Fig. 2E) and STAGE II a parameter in DN, and 𝑟 parameter in 270 

power utility. Due to the nature of our design, a hyperbolic relationship (i.e. 𝑦 = !
)
) would suggest that 271 

STAGE I curvature was undone in STAGE II in both models. In the power utility model, this would also 272 
imply linear encoding of monetary payoffs4. In DN, it would mean that all curvature in STAGE II is associated 273 
with the DN encoding. Fig. 3E-G plots STAGE II parameters against STAGE I 𝜌. 274 

In both Pareto and uniform environments, we saw a much closer hyperbolic relationship between 𝜌 and 275 
the DN 𝛼 parameter (Fig. 3 E and G) than between 𝜌 and power utility 𝑟 parameter (Fig. 3 F and H). We 276 
compared the root of mean squared errors (RMSE) between the hyperbolic function and the parameters in 277 
both models and confirmed that across the two environments, the a parameter of the DN model was more 278 
likely to maintain this hyperbolic relationship (a: Pareto: RMSE=0.6491, uniform: RMSE=0.6585; r: Pareto: 279 
RMSE=0.8109, uniform: RMSE=0.8588). This suggests that the curvature of the STAGE II subjective value 280 
functions can be attributed to DN value coding. 281 

Taken together, all these results strengthen the notion that subjects used DN encoding of value in both 282 
environments.  283 

 
4 This is because (𝑥!)

!
" = 𝑥. 
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[Insert Table 2 here] 285 

 286 

[Insert Fig. 3 here] 287 

 288 

 289 

Context-Dependency: Adaptation of the Encoding Function to the Choice Environment 290 
 291 
Our next aim was to examine whether subjects adapted their encoding according to the properties of the 292 
different environments. Another key difference between the uniform and Pareto environments was that, for 293 
all subjects in our sample, the medians of the subjective valuations in the uniform environments were higher 294 
than in Pareto (sample medians: 18.721 vs. 14.723 util units, respectively, D= 3.998, one-sided Wilcoxon 295 
sign-rank test between subject-specific medians, Z=7.572, p<0.0001). The reward expectation 𝑀 in the DN 296 
model tracks the median of the reward distribution, and hence we hypothesized it would be higher in the 297 
uniform environment. Consistent with this hypothesis, the sample median of the recovered 𝑀 parameters 298 
in the uniform environment was higher by 4.99 (in util units) than in the Pareto environment (one-sided 299 
Wilcoxon sign-rank test, Z=2.8907, p=0.0019, Table 1). This difference between the recovered 𝑀 300 
parameters was very close to the actual difference between the distributions’ medians, indicating that 301 
subjects – at least at the sample-level – quite precisely calibrated their encoding to the difference in reward 302 
expectation. On the subject level, we found that for 44 out of 76 subjects estimated 𝑀 was higher in the 303 
uniform environment (Fig. 4A). 304 

Our pooled estimation further supports this conclusion with 𝑀(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)=66.6531 and 305 
𝑀(𝑃𝑎𝑟𝑒𝑡𝑜)=55.5609, second and third columns in Table S4, p<0.001. As a final robustness check, we 306 
estimated the DN model using the full dataset with the data from both environments, and included an 307 
additive dummy variable for the Pareto environment in the estimation of the 𝑀 parameter (𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +308 
𝑀230456𝑥𝑃𝑎𝑟𝑒𝑡𝑜). The output of this model split 𝑀 into a constant, corresponding to the estimate of 𝑀 for 309 
the uniform environment, and 𝑀230456, which captured the difference in 𝑀 in the Pareto relative to the 310 
uniform environment. We found 𝑀230456 to be negative and significant (p<0.001), indicating 𝑀 was lower in 311 
the Pareto environment.  312 

In contrast to the 𝑀 parameter, we had no prior hypotheses regarding the model’s curvature 313 
parameter a. Nevertheless, comparing subject-specific estimates, we found that on average, the a 314 
parameter was higher by 0.1593 in the Pareto environment (one-sided Wilcoxon sign-rank test, Z=1.9987, 315 
p=0.0228, Fig. 4B). This result may indicate that higher a values in the Pareto environment allowed better 316 
discriminability between the more frequently encountered lottery options, also indicated by our model-free 317 
analysis (Table 1), which was crucial given the correlational structure between the two valuations. However, 318 
this result was not fully replicated in the pooled estimates: when estimating each environment separately, 319 
we found that recovered parameters were almost identical (auniform=0.93, aPareto=0.92, Table S4, second 320 
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and third columns), but a full model with random effect for the Pareto environment (similarly to the one run 321 
on 𝑀), revealed that there was a tuning of the function curvature when switching between environments 322 
(Table S4, rightmost column, p<0.001).  323 

The power utility model is not designed to capture the dependence of the subjective value function 324 
on the distribution of valuations and hence we did not anticipate an adaptation of the function’s curvature. 325 
Indeed, when comparing estimates of 𝑟 across the two environments, we obtain inconclusive results: while 326 
the pooled estimates indicated higher 𝑟 values in the Pareto environment (Table S4), the subject-level 327 
estimates point in the opposite direction (Fig. 4C, one-sided Wilcoxon sign-rank test between subject-level 328 
estimates of  𝑟, Z=0.0511, p=0.4796).  329 

To conclude this section, we found that subjects adapted the DN encoding function’s parameters 330 
to the two environments in line with our hypothesis, showing context-dependency in choice.     331 
 332 

 333 

[Insert Fig. 4 here] 334 

 335 

  336 
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Discussion 337 

In this study, we tested how the distributional properties of choice environments affect value encoding. In 338 
particular, we were interested in whether the subjective value of rewards is encoded via a mechanism like 339 
divisive normalization (DN) exclusively in the Pareto environments for which it is efficient, or whether a DN 340 
representation is also employed in environments characterized by different reward distributions. To this 341 
end, we designed an experiment in which subjects were asked to make choices in two distinct statistical 342 
environments. In one environment, rewards were drawn from a Pareto distribution of valuations, for which 343 
DN is considered an efficient encoder. In the other environment, valuations were uniformly distributed, and 344 
DN would not represent the environment most efficiently (26).  345 
 Our results indicate that subjects in our study were better described as using a DN mechanism 346 
than a power utility mechanism to encode the subjective value of rewards, no matter from which of our two 347 
distributions the rewards were drawn. As expected, the key parameter of the model tracked the median of 348 
the distribution. A model-free analysis indicated that, compared to the uniform environment, when in the 349 
Pareto environment, subjects made fewer mistakes in choice sets drawn from the center of the distribution 350 
at the expense of the margins, a principal property of the DN function. We then fit our subjects’ choices with 351 
two classic stochastic choice models – one was a standard RUM with a power utility function, and the other 352 
was a RUM with a utility function belonging to the family of DN models. Our subject-level and pooled model-353 
fitting results suggested that the DN model better captured subjects’ choice patterns in both the Pareto and 354 
the uniform environments (Table 2, Fig. 4C-D and Table S5). In line with the actual statistical properties of 355 
the two environments, subjects had higher reward expectations in the uniform environment. Taken together, 356 
these findings suggest that although subjects’ choices were affected by the context of the choice 357 
environment, their choice mechanisms were constrained to a DN encoding of value (Fig. 5).  358 
 359 
 360 

[Insert Fig. 5 here] 361 
 362 
 363 
Our findings indicate that in both environments the encoding of value was better described by a 364 

DN rather than a power utility encoder. Why would this be so? One possibility is that Pareto distributions 365 
are very common in the real world, and hence, the brain has evolved a constraint that accords well with 366 
natural environments. Indeed, numerous sensory stimuli are characterized by Pareto-like statistical 367 
properties (1, 14, 18, 27). On a larger scale, Pareto distributions also capture various ecological quantities, 368 
such as temporal and spatial measures of biodiversity (37–40). This is true also for environments that are 369 
related to value-based decisions because many economic and financial quantities in modern societies (41, 370 
42), including consumption of several categories of consumer goods (43), have Pareto-like properties. An 371 
alternative hypothesis is that even the uniform distributions we examined are more efficiently dealt with by 372 
a DN encoder than the non-divisive power utility encoder. Indeed, recent theoretical advances (13) have 373 
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shown that all encoders with limited precision or accuracy must incorporate an implicit divisive cost, a class 374 
of encoders of which DN is a member.  375 

Another important finding is that, compared with the standard utility functions used in economics, 376 
DN provides the brain with an immensely flexible tool for the representation of choice options (32, 33). 377 
Given the specific parameterization we employed for DN, our model embeds the standard concave utility 378 
function, but is also suitable for capturing preferences that follow S-shaped functions, similar to the one 379 
suggested by Prospect Theory (44). DN further tracks the median of rewards (expectations), which allows 380 
for scale-invariant adjustments to different environments, while ensuring a fine discrimination between 381 
stimuli that are in the center of the distribution (2, 9, 13, 45). These adjustments – also evident in our data 382 
– give rise to context effects in choice processes (25, 33, 46, 47), and are also the core reason for some 383 
notable perceptual illusions (48, 49).  384 

Our findings also imply that some choice patterns should not be regarded as built-in decision 385 
biases, errors, or mistakes. Rather, they reflect adjustments of the brain, as a constrained system, to its 386 
environment, thus reflecting a rational value-encoding mechanism (2, 13). Such an observation can explain 387 
the under-sampling of rare events when subjects adjust to new choice environments (50, 51) since the main 388 
focus of the system is on the mass of occurrences. On a broader view, our results could explain 389 
heterogeneity in individual decisions, such as the effect of one’s position along the long-tail distributions of 390 
socioeconomic measures (and their shapes) on the quality of healthcare (52), savings (53), and 391 
consumption (54) choices.     392 

Finally, an interesting question that stems directly from our research is to what extent our results 393 
generalize beyond decision making processes to other cognitive functions, such as sensory processing. 394 
Even though various natural sensory stimuli are described by Pareto-like properties (14, 18, 45), we also 395 
frequently encounter, and are required to process, non-natural non-Pareto stimuli (55, 56). Our findings 396 
therefore invite further investigation into the effects of an obligate DN encoding on the sensory processing 397 
of non-Pareto stimuli.   398 

399 
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Materials and Methods 400 

 401 
Some of the data in this manuscript have been used in the conference paper in reference (57). 402 
 403 
Experimental Design 404 
 405 
Valuation task (STAGE I). Our goal was to establish whether the brain employs different value encoding 406 
models in environments with different reward distributions. To eliminate any additional prior heterogeneity 407 
in subjects’ subjective valuations of money, we generated distributions of rewards in the subjective value 408 
(SV) space instead in dollar amounts (or expected values). To map the subject-specific SV space, we first 409 
recovered individual-specific subjective value functions over dollar amounts. To do this, in STAGE I, we 410 
used a valuation task, in which subjects reported their willingness to pay to participate in a lottery. See 411 
Table S1 for the list of 33 lotteries used in this task. On each trial, subjects were presented with a 412 
visualization of a 50-50 lottery on the computer screen and had to type in their willingness to pay to 413 
participate in it as a dollar amount (Figure 2A). For each lottery, the valuation could range between the 414 
current lottery’s minimal and maximal payoff, in $0.10 increments. All subjects completed the same 33 trials 415 
in an order randomized at the subject level. At the end of the session, the realization of one randomly 416 
selected trial was implemented for payment, using a Becker–DeGroot–Marschak (BDM) (58) procedure 417 
which was designed to elicit truthful valuations. 418 
 419 
Choice task (STAGE II). STAGE II was designed to test whether the distribution of rewards (lotteries with 420 
different subjective valuations) in a choice environment affects what value encoding model subjects use. 421 
Subjects were asked to choose the 50-50 lottery they preferred from two available options that varied from 422 
trial to trial. Lottery payoffs ranged between $0 and $60 in $0.10 increments. Overall, subjects made 640 423 
binary choices that were divided into two blocks of 320 trials each and presented on subsequent days. Our 424 
experimental manipulation was that in each block, the valuations were drawn either from a Pareto Type III 425 
distribution for which DN is an efficient code (26) or from a uniform distribution (Fig. 2A-B). The order in 426 
which subjects experienced these environments was counter-balanced across subjects. One trial was 427 
randomly selected for payment at the end of each experimental session.5  428 
 429 
Subjective Value of Money. We used each subject’s STAGE I single lottery valuations to estimate their 430 
subjective value function over money. We expressed each subject 𝑖’s subjective value of a 50-50 lottery 431 
that paid 𝑦! or 𝑦", each equally likely, using a power utility function as: 432 

(iii) 𝑢#(𝑦!, 𝑦") = 0.5𝑦!
$! + 0.5𝑦"

$! 433 

If the curvature parameter 𝜌# < 1, then subject 𝑖 is risk-averse. When 𝜌# = 1, the subject is risk-neutral. If 434 
𝜌# > 1, the subject is risk-seeking. Therefore, the certainty equivalents (𝑐) that participants stated were 435 
converted to subjective values using the same power utility function such that 𝑐 = 𝑢!/$. We ran an NLS 436 
regression to estimate the 𝜌 parameter separately for each subject. 437 
 438 
 We used the subject’s estimated 𝜌#, to pick different combinations of lottery dollar payoffs to create 439 
lotteries that had a specific SV to that individual. This enabled us to generate sets of lotteries whose implied 440 
SV distributions matched our target distributions (see below), regardless of individual differences in the 441 
curvature of the subjective value function.  442 
 443 
 444 

 
5 Subjects also completed additional 640 trials with six-option choice sets with lottery valuations drawn either from a 

Pareto Type III or uniform distributions. Thus, in total, in each environment subjects encountered two 320 choice blocks. 
The six-option blocks were designed to examine another research question that is beyond the scope of the current 
study and will be reported in a separate paper. Blocks were presented in an order randomized across subjects but on 
a given day, all blocks were drawn from the same distribution. Payments for STAGE II included a realization of one 
choice from each of the two sessions, and could be drawn either from the two-options sets or from the six-options sets. 



 15 

Distributions of Valuations 445 
  446 
Uniform Distributions of SVs. For each subject 𝑖, we computed the upper bound of the distribution as the 447 
SV of the maximal possible monetary payoff in the study, which was $60 (i.e., 𝑢#83) = 609'). We then divided 448 
the range [0, 𝑢#83)] into 40 equally-spaced SV increments. For each of the increments, we created eight 449 
different lotteries, which would give the subject the subjective value in exactly this bracket (for a total of 320 450 
lotteries). Since the joint distribution of a two-dimensional uniform distribution is independent, and hence 451 
determined by its marginals, we then picked pairs of lotteries from this set for generating binary choice sets.  452 
 453 
Pareto Type III Distributions of SVs. The DN encoding function is information-maximizing for a bivariate 454 
Pareto distribution with a joint pdf (see Eq. 7 with 𝜇! = 0 in reference (26))6 𝑓%!C𝑢#,!, 𝑢#,"D for every subject 𝑖 455 
and 𝑘 ∈ {1,2} is an index indicating the choice option within the choice set. 456 

(iv) 𝑓%!C𝑢#,!, 𝑢#,"D = 𝛽"
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(!,#
<
)!,%
(!,%

=
*+#

"
%,# >

<!,∑ (
)!,%
(%

)*"
%,# =

- 	, 457 

and the marginal pdf being a univariate Pareto Type III pdf:  458 
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(vi) 𝐸C𝑢#,'X𝑢#,@D = 𝜎#,' Z1 +	[
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We matched, for each subject, 𝐸C𝑢#,'X𝑢#,@D to the expectation of the uniform distribution, which was $30 (and 462 
𝑢È = 30$ in SV-space), where Γ indicates the gamma function.  463 

Following Proposition 4 in (26) and using the subject-specific parameterization, we generated the 464 
Pareto Type III distributions as a scale mixture of transformed exponential (or Weibull) random variables, 465 
so that: 466 

(vii)  𝑢#,' =	𝜎#,' c
F!,%
G!
d
#
* ,							𝑓𝑜𝑟	𝑘 ∈ {1,2} 467 

where 𝑈'~𝐸𝑥𝑝(𝜆 = 1) and 𝑍~𝐸𝑥𝑝(𝜆 = 1) independently of all 𝑈'. Fig. 2C presents three examples for such 468 
distributions with different ρH values.  469 

Note that using only 320 draws may lead to under-sampling of the distributions. Therefore, to fully 470 
capture the shape of the distribution, for each subject, we first generated joint Pareto distributions with 100K 471 
draws. We then created small 600-draw experimental distributions that matched the large 100k-draw 472 
distributions, allowing a deviation of up to 0.2 utils from the actual first and second moments (mean and 473 
standard deviation) of the large 100k-draws sets. Fig. 2D compares matched and unmatched small sets, 474 
corresponding to the large 100k-draws set presented in Fig. 2C (middle panel). Finally, we truncated the 475 
long tail of the Pareto Type III distributions at 𝑢#83) = 609 (eliminating 6.5 to 23.83 percent of the distribution, 476 
depending on the 𝜌 parameter, the curvature of the subjective value function), to match the upper bound of 477 
the uniform distribution and to avoid extreme reward amounts. We then casted 320 SVs at random from 478 
the remaining valuations, which constituted the experimental subject-specific Pareto distributions. 479 

 
6 We set the location parameter 𝜇" = 0 to match the lower bound of the uniform distribution, and to avoid negative 

valuations. 
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 480 
Generating Binary Choice Sets from the Distributions of Valuations. The final step was to generate 481 

lottery dollar amounts from the SV distributions. For each lottery 𝑘 with a valuation (𝑢'), we first randomly 482 
drew the first monetary payoff 𝑥!,' from a range of possible payoffs $0 − 𝑥83) in $0.10 increments. We had 483 
to restrict the maximum value of 𝑥!,' to make sure that including it in the lottery, does not exceed the lottery 484 
valuation (𝑢'), and thus to avoid negative values for the second lottery payoff. We determined the maximal 485 
value of the first payoff 𝑥!,'	using the minimum function:    486 

(viii) 𝑥!,'83) = min	{(2𝑢')
#
0, 60}. 487 

 488 
We then solved for 𝑥',", giving rise to the desired 𝑢', rounded to one decimal place, using the following 489 
equation: 490 

(ix)  𝑥",' = C2𝑢' − (	𝑥!,')$D
#
0. 491 

Figure S1 shows how the heterogeneity in 𝜌 values affected the distributions of  𝑥',! and  𝑥',". 492 
 493 
We restricted the share of trials with first-order stochastic dominance (FOSD) (trials on which both 494 

lottery payoffs of one lottery were higher or equal to the other lottery’s payoffs) to 45 percent. For subjects 495 
with 𝜌# → 0	, we could not generate experimental sets with only 45 percent of the trials. Thus, we fixed 𝜌#=1, 496 
for all subjects with 𝜌# < 0.1 (a total of 4 subjects, see Table S2), limiting the interoperability of data from 497 
this small number of subjects. In contrast, for two subjects with very high 𝜌’s (ρH > 4), we also had to fix 498 
ρH = 1 in STAGE II of the study, since a very large tail from their Pareto distribution of SVs exceeded $60. 499 
Respectively, the interoperability of data from this subject is also limited. Nonetheless, we wanted to avoid 500 
any unjustified elimination of data, and therefore analyzed data from these six subjects. Importantly, our 501 
main qualitative findings do not change once we remove these subjects from our sample. 502 
  503 
Procedures 504 
 505 
Sessions. Experimental sessions were carried out online via Zoom while subjects completed the task on 506 
a website. We ran eight sessions of the experiment between May 2022 and August 2022. After instruction, 507 
subjects had to successfully answer a set of comprehension questions about the procedure before starting 508 
STAGE I. They could participate in STAGE II of the study only if they completed all trials in STAGE I. 509 
Subjects received all payments after completing both STAGE I and STAGE II. Subjects received a $10 510 
participation fee and on average $24.5 in STAGE I (range $0-60) and $76.02 in STAGE II (range $7.3-120) 511 
from the decision task. All amounts are in Australian dollars. All parts of the experiment were self-paced. 512 
Both the valuation and the choice tasks were programmed in the oTree software package (60). 513 
 514 
Participants. We recruited participants from various departments at the University of Sydney. Subjects 515 
gave informed written consent before participating in the study, which was approved by the local ethics 516 
committee at the University of Sydney. Seventy-six subjects (44 females, mean age=21.8, std: 3.34, range: 517 
18-30) passed the comprehension questions and completed STAGE I and the two choice tasks of STAGE 518 
II. 519 
 520 
Model Fitting 521 
Sample-level (pooled) estimates. We estimated subjects’ aggregated choice data via a probit choice 522 
function with maximum likelihood estimation (MLE). Standard errors were clustered at the subject level. 523 
Thus, in the pooled estimation subjects were treated as one representative decision-maker. In this analysis 524 
we used lotteries’ monetary rewards (as opposed to their subjective valuations) to allow meaningful 525 
estimates of DN’s 𝑀 parameter, and to confine the range of lottery payoffs. For both DN and power utility, 526 
we report the results from models estimated on the full dataset and separately on each choice environment. 527 
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To test the possibility of adaptation of the encoding function to the choice environments, we further report 528 
the results from three additional models estimated on the full dataset, which also included a dummy variable 529 
indicating the Pareto environment for the reward expectation, 𝑀 parameter (DN) as 𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +530 
𝑀230456𝑥𝑃𝑎𝑟𝑒𝑡𝑜 and similarly for the functions’ curvature parameters 𝛼 (DN) and 𝑟 (power utility), 531 
respectively.        532 
 533 
Subject-level estimates. DN. In each choice environment, we recovered subject-specific estimates of the 534 
free parameters, restricting the search space as follows: 𝛼 ∈ [0.1,5], 𝑀 ∈ [0, 𝑢#83)] and 𝜃>0 (see equation 535 
(i) in the text). We employed MLE using the Nelder-Mead algorithm with a max-iteration limit of 1,000 and 536 
a stopping criteria of 0.5 tolerance. We initialized 𝑀 to the distributions’ medians. 𝜃 was initialized at 0.03, 537 
matching the sample-level pooled estimate (see Table S5). For the 𝛼 parameter, we took ten random 538 
initializations in the range {0.1,5} with a precision of 5. For calculating the likelihoods, in each of the 320 539 
trials, we generated 10,000 samples with randomly drawn Gaussian noise. The log-likelihood function was 540 
thus given by –  541 
 542 

(x) 𝑙𝑜𝑔ℒC𝛼# , 𝑀# , 𝜃#X𝑢#,5D = 𝑦#,5log c𝑃𝑟C𝑦#,5 = 1X𝑢#,5Dd + (1 − 𝑦#,5)𝑙𝑜𝑔CPrC𝑦#,5 = 0X𝑢#,5DD, 543 

where 𝑦!,# = {0,1} indicates the subject’s 𝑖	choice in trial 𝑡 = {1,… ,320}.  544 
 545 
Power utility. We fitted the power utility model to recover subject-specific estimates of the 𝑟 and 𝜃 546 
parameters using a similar procedure. We restricted the search space as follows: 𝑟 ∈ {0.1,5}, and 𝜃>0 (see 547 
equation (ii) in the text). 𝜃 was initialized at 0.03, matching the sample-level pooled estimate (see Table 548 
S5). For the 𝑟 parameter, we took ten random initializations in the range {0.1,5} with a precision of 5. All 549 
other procedures were identical to the DN model. 550 
 551 
 552 
  553 
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Figures and Tables 690 

 691 

 692 
Figure 1. Research Question. (A) Choice environments are determined by the distribution of valuations. 693 
We compare a long-tailed bivariate Pareto Type III environment for which DN is efficient code with a 694 
uniformly distributed environment for which DN is not an efficient code. Figures show 2D histograms of 695 
simulated choice trials with valuations in the range 𝑢' ∈ [0,60] for every lottery 𝑘 ∈ {1,2}. Each reward’s 696 
value was drawn from 40 bins. Insets show their corresponding marginal distributions. We simulate 100k 697 
valuations per environment. See Materials & Methods for further details. (B) Value encoding choice 698 
functions. We test two different RUM models: classic power utility (left) and DN (right). The figure shows 699 
the probability of choosing a lottery with valuation 𝑢! over a lottery with valuation 𝑢" for various parameter 700 
values in each model. Insets show the subjective representation of 𝑢! in power utility (𝑅), and in DN (𝑆). 701 
For every combination of 𝑢! and 𝑢", we simulate 1k binary choice sets. We allow stochasticity in choice by 702 
incorporating additive noise, drawn from 𝜂~𝑁(0, 0.05 ∗ 𝑅z83)(𝑢!), such that 𝑅z83)(𝑢!) denotes the maximal 703 
subjective value of 𝑢! in the power utility model (and 𝜁~𝑁(0, 0.05 ∗ �̅�83)(𝑢!) in the DN model, respectively). 704 
We cast 10K noisy draws per simulated trial and reported average choice probabilities across simulated 705 
sets. (C) Contour plots indicate the mass of occurrences of (𝑢!, 𝑢") choice trial combinations in each 706 
environment. Contours were laid over a representative DN model with 𝛼 = 4,𝑀 = 30 (middle right panel in 707 
(B).         708 
  709 
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 710 
 711 
Figure 2. Experimental Design. (A) Timeline. In STAGE I, subjects reported their valuations for 33 lotteries. 712 
Valuations were used to recover the curvature of the subjective value function for each subject using NLS 713 
estimation. Based on those estimates, we generated subject-specific bi-dimensional uniform and Pareto 714 
Type III distributions of valuations for STAGE II of the study. In STAGE II, subjects completed two sets of 715 
320 binary choices between 50-50 lotteries (640 choices in total). (B) Bi-dimensional Pareto and uniform 716 
distributions. In the uniform distribution, we created 40 bins of subjective values between 0 and the maximal 717 
payoff in the study ($60, 𝑢#83) = 60$!) with eight lotteries in each bin. We then picked pairs of lotteries from 718 
this set to create binary choice sets. In the Pareto distribution, we used a Gamma-weighted scale mixture 719 
of exponential random variables to capture the covariance structure of the bi-variate Pareto distribution. (C) 720 
Choice sets in STAGE II controlled for differences in individual subjective value function (risk attitudes), 721 
modulating the second moment (std) of the Pareto distribution (see eq. (vi) in Materials and Methods). The 722 
histograms show the bi-dimensional Pareto distributions and their marginals (with 100k draws per 723 
distribution) from three representative subjects: left - a risk averse subject, middle - a risk neutral subject, 724 
right - a risk seeking subject. (D) Experimental sets with 320 trials were prone to under-sampling (see top, 725 
unmatched distribution). We matched experimental sets to the distributional shape of a larger set with 100k 726 
draws (see bottom, matched distributions). The figure shows an example corresponding to the middle panel 727 
in (C). (E) Recovered estimates of subjective value curvature (risk attitudes) from STAGE I. See Methods 728 
and Figure S1 for further details. See Table S2 for a list of the estimated subjective value function curvatures 729 
(risk parameter 𝜌).   730 
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 731 
 732 
Figure 3. Model-fitting. (A-B) Probability of choosing lottery 1 with valuation 𝑢!, in a (𝑢!, 𝑢") choice set. 733 
Data is aggregated over subjects. Within subjects, valuations are divided into 60 equally-spaced bins. (A) 734 
The Pareto environment. (B) The uniform environment. (C-D) Each dot is one subject’s DN model BIC score 735 
(y-axis) plotted against the same subject’s power utility BIC score (x-axis). A dashed 45-degree line 736 
indicates when both models are equally successful. Inset shows the difference in BIC scores (𝐵𝐼𝐶16I40 −737 
𝐵𝐼𝐶./). (C) The Pareto environment. (D) The uniform environment. (E-F) Relationship between the STAGE 738 
I curvature of the subjective value function (r) and STAGE II subjective value functions in the Pareto 739 
environment. Dashed curve indicates hyperbolic function 𝑦 = !

)
. (E) DN model (a parameter). (F) Power 740 

utility model (r parameter). (G-H). Same as (E-F), but for the uniform environment. Dots indicate individual 741 
subjects, + indicate the sample averages. N=76.   742 
  743 
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 744 

 745 
Figure 4. Cross-environment adaptation. (A-B) Adaptation of the encoding function in the DN model. (A) 746 
Best-fitting 𝑀 parameter in the uniform (x-axis) vs. the Pareto (y-axis) environments. Estimates of 𝑀’s are 747 
in utility space. Left inset: outliers. Right (diagonal) inset: Difference in the estimates of 𝑀 across choice 748 
environments (𝑀(𝑢𝑛𝑖𝑓𝑜𝑟𝑚) −𝑀(𝑃𝑎𝑟𝑒𝑡𝑜)). Insets do not show three additional (risk-seeking) subjects 749 
whose 𝑀’s are >400 (in util units). Dots indicate individual subjects, + indicate sample average without the 750 
inset outliers, N=76. (B) same as (A) for the DN’s 𝛼 parameter. (C) Adaptation of the encoding function in 751 
the power utility model. Same as (B), but for the 𝑟 parameter from the power utility model. (B-C) Dots 752 
indicate individual subjects, + indicate sample average, N=76.   753 
 754 
  755 
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 756 
Figure 5. Summary of main findings.  757 
  758 
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Table 1. Results from the model-free analysis. Probit regressions with the dependent variable is equal to 1 759 
when the subject chose the lottery with the higher SV, and zero otherwise. Column (1) model was run on 760 
the full sample. The independent variables are the absolute SV difference between the two lotteries, a 761 
dummy indicating the Pareto environment and their interaction. Column (2) model was run on data including 762 
choice sets in the center of the distributions. The model includes the same independent variables as model 763 
(1), and an additional dummy equal to 1 if the lottery was taken from around the diagonal (and zero 764 
otherwise, see text for definitions) and its interaction with the Pareto dummy. Standard errors clustered on 765 
subject in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.  766 

 (1) (2) 

 
Full  

sample 
Center of the 
distributions 

SV difference 0.0002* -0.0001 
 (0.0001) (0.0000) 
   
Pareto -0.3311*** -0.1479*** 
 (0.0405) (0.0374) 
   
Pareto*SV difference -0.0001* -0.0003*** 
 (0.0001) (0.0001) 
   
Near diagonal  -0.7400*** 
  (0.0692) 
   
Pareto*Near diagonal  0.1742** 
  (0.0597) 
   
Constant 1.3260*** 1.1201*** 
 (0.0704) (0.0713) 
N 48640 22442 
pseudo R-sq 0.015 0.036 

 767 

 768 

  769 
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Table 2. Median estimates.  770 

 771 

  772 

 Power Utility model DN model 

Parameter r 𝜃1 BIC α M 𝜃./ BIC 

Uniform 0.379 0.054 121.120 1.299 23.216 0.0233 104.670 

Pareto 0.528 0.103 184.761 1.358 18.875 0.026 154.482 
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Supporting Information 773 
 774 
 775 

 776 
Figure S1. Representative Sets in STAGE II. Left – a risk averse subject, middle – a risk neutral subject, 777 
right – a risk seeking subject. Top to bottom: (1) Distributions of the high winning amount in Lottery 1 (in 778 
dollars); (2) Distributions of the low winning amount in lottery 1 (in dollars); (3) Distribution of the expected 779 
earnings (EV) of Lottery 1 (in dollars); (4) Distributions of the valuations (u1) of Lottery 1 (in util units);  780 
(5) 2-dimensional histogram of the valuations of Lottery 1 and Lottery 2 (u1 and u2, in util units). 781 
 782 
 783 
 784 
 785 
 786 
  787 
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 788 
Figure S2. Descriptive statistics. Left – violins show the share of trials in which subjects chose the lottery 789 
with the higher subjective value. Right – violins show the number of FOSD violations per subject. Dots 790 
indicate individual subjects. N=76.  791 
 792 
  793 
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 794 
 795 
 796 

  797 
Figure S3. Noise estimates. Comparing the best-fitting 𝜎 parameter (decision noise) across the 798 
distributional environments reveals noise levels were higher in the Pareto environment. Left - DN model 799 
(one-sided Wilcoxon sign-rank test, Z=2.2314, p=0.0257). Right - Powe Utility model (one-sided Wilcoxon 800 
sign-rank test, Z=2.9172, p=0.0035). Scatters indicate individual subjects. N=76.   801 
 802 
 803 

 804 
  805 
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Table S1. Lotteries used in STAGE I 806 
 807 

lottery x1 x2 
1 60 0 
2 55 0 
3 50 0 
4 45 0 
5 40 0 
6 35 0 
7 30 0 
8 25 0 
9 20 0 
10 15 0 
11 10 0 
12 5 0 
13 60 5 
14 55 5 
15 50 5 
16 45 5 
17 40 5 
18 35 5 
19 30 5 
20 25 5 
21 20 5 
22 15 5 
23 10 5 
24 60 10 
25 55 10 
26 50 10 
27 45 10 
28 40 10 
29 35 10 
30 30 10 
31 25 10 
32 20 10 
33 15 10 

 808 
  809 
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Table S2. Individual-level estimates of risk preferences from subjects’ bids in STAGE I.  810 
 811 

SID  r SE  SID r SE 
1005 0.000 (*) 0.009  1501 0.866 0.051 
1104 0.000 (*) 0  1406 0.875 0.018 
1205 0.000 (*) 0  1308 0.876 0.093 
1401 0.000(*) 0  1614 0.876 0.068 
1001 0.347 0.055  908 0.88 0.045 
1006 0.374 0.067  1508 0.891 0.066 
1301 0.377 0.056  1408 0.909 0.033 
1201 0.429 0.106  909 0.927 0.176 
1617 0.437 0.04  1008 0.946 0.055 
903 0.443 0.045  1502 0.954 0.065 
1619 0.461 0.036  1607 0.954 0.042 
1605 0.463 0.094  1402 0.961 0.067 
1601 0.49 0.057  1604 0.968 0.018 
1101 0.492 0.069  1105 0.981 0.018 
910 0.499 0.053  1204 1 0 
1610 0.5 0.043  1603 1 0 
1405 0.518 0.048  1409 1.008 0.132 
906 0.586 0.039  1513 1.012 0.058 
1407 0.593 0.045  1012 1.018 0.028 
1611 0.601 0.054  1613 1.018 0.016 
1106 0.612 0.058  1505 1.047 0.042 
1109 0.627 0.044  1608 1.09 0.157 
1307 0.628 0.039  1305 1.185 0.126 
1403 0.639 0.06  1004 1.192 0.145 
1615 0.64 0.084  1002 1.201 0.068 
904 0.647 0.048  1504 1.203 0.142 
1510 0.655 0.074  1102 1.244 0.086 
902 0.686 0.047  1003 1.253 0.062 
1107 0.711 0.227  1609 1.278 0.095 
1303 0.718 0.038  1304 1.358 0.197 
1103 0.727 0.038  1503 1.407 0.109 
1010 0.733 0.041  1302 1.577 0.143 
1512 0.752 0.025  1011 1.61 0.157 
1506 0.769 0.036  1616 1.808 0.24 
1507 0.775 0.074  912 2.276 0.185 
1306 0.806 0.055  1202 124.189 (*) 28.955 
907 0.819 0.045  1203 4.432 (*) 0.261 
1014 0.833 0.026        

 812 
(*) For these subjects we could not generate distributions of valuations for STAGE II that would adhere to 813 
our requirement to limit the number of trials with FOSD violations (when 𝜌# ⟶ 0), or without having to censor 814 
a very large tail of the Pareto distribution (when 𝜌# > 4). Instead, for these subjects we plugged-in 𝜌# = 1 to 815 
generate the distributions for STAGE II. 816 
 817 
  818 
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Table S3. Robustness checks for the findings presented in Column (2) in Table 1. We vary the definitions 819 
for center of the distributions (center) and around the diagonal (diagonal). Column (1) corresponds to the 820 
regression presented in the Main Text. 821 

 

(1) 
Center: $9-42 

Diagonal: 0.9 < ##
#!
< 1.1 

(2) 
Center: $9-42 

Diagonal: 0.95 < ##
#!
< 1.05 

(3) 
Center: $12-39 

Diagonal: 0.9 < ##
#!
< 1.1 

(4) 
Center: $12-39 

Diagonal: 0.95 < ##
#!
< 1.05 

SV difference -0.0001 -0.0000 -0.0002** -0.0001** 
 (0.0000) (0.0000) (0.0001) (0.0000) 
     

Pareto -0.0003*** -0.0003*** -0.0002*** -0.0002** 
 (0.0001) (0.0001) (0.0001) (0.0001) 
     

Pareto*SV difference -0.1479*** -0.1547*** -0.1138** -0.1228*** 
 (0.0374) (0.0334) (0.0394) (0.0354) 
     

Near diagonal -0.7400*** -0.8916*** -0.6463*** -0.8166*** 
 (0.0692) (0.0730) (0.0708) (0.0740) 
     

Pareto*Near diagonal 0.1742** 0.3213*** 0.1427* 0.3178*** 
 (0.0597) (0.0660) (0.0656) (0.0734) 
     

Constant 1.1201*** 1.0618*** 1.0146*** 0.9580*** 
 (0.0713) (0.0635) (0.0726) (0.0642) 
 22442 22442 16576 16576 
N 0.036 0.027 0.029 0.022 
pseudo R-sq -0.0001 -0.0000 -0.0002** -0.0001** 

  822 
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Table S4. Individual-level best-fitting model parameters across environments (STAGE II). 823 
 824 

SID r 
DN Power Utility 

Pareto Uniform Pareto Uniform 
M a q M a q r q r q 

1001 0.35 4.063 3.54 0.031 4.142 3.851 0.014 2.258 1.257 2.692 1.215 
1006 0.37 1.442 2.4 0.058 1.808 1.838 0.051 0.674 0.192 0.714 0.207 
1301 0.38 2.713 4.39 0.122 2.52 3.342 0.043 1.319 0.747 1.265 0.413 
1201 0.43 5.709 2.7 0.025 5.517 2.82 0.02 1.947 1.376 1.918 0.819 
903 0.44 3.642 3.18 0.043 3.622 3.417 0.031 1.347 0.539 1.336 0.517 
1617 0.44 5.583 2.05 0.03 5.938 2.195 0.02 1.397 0.711 1.274 0.227 
1619 0.46 6.615 2.86 0.012 6.615 2.795 0.01 1.767 0.456 2.1 0.067 
1101 0.49 7.491 4.39 0.014 7.491 5 0.024 2.803 0.032 3.5 50.499 
1601 0.49 3.221 1.29 0.026 2.299 1.713 0.024 0.608 0.142 0.463 0.054 
910 0.5 7.726 2.91 0.012 7.726 3.091 0.024 1.843 0.067 2.341 0.028 
1610 0.5 7.439 2.14 0.046 7.732 2.158 0.048 1.466 1.463 0.169 0.051 
1405 0.52 8.329 2.35 0.007 8.337 2.52 0.005 1.558 0.046 1.862 0.035 
906 0.59 9.181 1.48 0.038 6.865 1.268 0.035 0.84 0.418 0.628 0.21 
1407 0.59 10.038 2.19 0.032 11.066 1.331 0.032 1.397 0.041 0.605 0.187 
1611 0.6 10.916 1.47 0.021 8.483 1.932 0.03 0.971 0.391 1.092 0.678 
1106 0.61 11.711 3.82 0.069 12.268 1.277 0.037 3.5 0.016 0.335 0.054 
1109 0.63 7.008 1.82 0.025 8.8 1.596 0.02 0.856 0.324 0.774 0.242 
1307 0.63 12.895 1.8 0.021 9.504 1.48 0.028 1.29 0.9 0.61 0.05 
1403 0.64 10.037 2.37 0.008 9.728 2.764 0.013 1.392 0.818 1.331 0.744 
1615 0.64 8.884 0.71 0.023 8.685 0.911 0.041 0.231 0.048 0.348 0.114 

904(**) 0.65 14.149 0.1 1 14.149 0.1 1 0.1 3.84 0.1 1.174 
1510 0.66 12.807 1.06 0.02 9.392 1.328 0.03 0.599 0.162 0.444 0.041 
902 0.69 8.798 1.57 0.033 8.454 1.776 0.018 0.249 0.051 0.717 0.224 
1107 0.71 3.503 1.59 0.042 4.333 1.461 0.045 0.294 0.111 0.193 0.053 
1303 0.72 8.09 1.55 0.027 13.044 1.146 0.018 0.556 0.158 0.479 0.093 
1010 0.73 20.129 1.33 0.036 19.703 1.466 0.021 0.874 0.89 0.747 0.296 
1103 0.73 7.997 0.79 0.03 11.232 0.562 0.025 0.255 0.073 0.162 0.044 
1512 0.75 11.392 1.76 0.054 12.119 1.32 0.059 0.165 0.05 0.154 0.054 
1506 0.77 18.808 1.55 0.024 20.815 1.373 0.012 0.935 0.676 0.63 0.045 

1507(**) 0.77 1.15 2.51 0.055 10.924 0.306 0.049 0.1 0.101 0.1 0.09 
1306 0.81 27.078 1.83 0.021 24.896 2.176 0.02 0.886 0.437 0.143 0.054 
907 0.82 11.66 1.15 0.036 8.719 1.231 0.016 0.181 0.035 0.391 0.07 
1014 0.83 18.769 1.42 0.03 24.162 1.355 0.034 0.663 0.288 0.742 0.587 
1501 0.87 34.674 0.82 0.023 34.617 0.883 0.027 0.183 0.049 0.196 0.049 
908 0.88 27.922 0.99 0.021 36.342 0.95 0.018 0.55 0.227 0.255 0.047 
1308 0.88 2.713 4.39 0.122 36.133 2.176 0.03 0.1 0.061 0.1 0.033 
1406 0.88 29.879 1.57 0.016 28.679 1.578 0.008 0.923 0.674 0.952 0.03 
1614 0.88 31.894 1.31 0.022 21.161 1.267 0.036 0.2 0.074 0.1 0.026 
1508 0.89 1.747 0.87 0.041 22.703 0.518 0.041 0.1 0.04 0.1 0.04 
1408 0.91 38.529 1.34 0.015 41.378 1.638 0.004 0.865 0.656 1.001 0.121 
909 0.93 18.397 0.66 0.035 33.938 0.65 0.039 0.156 0.052 0.114 0.044 
1008 0.95 13.914 1.33 0.044 21.842 0.822 0.021 0.183 0.054 0.219 0.05 
1502 0.95 18.941 0.52 0.021 47.922 0.293 0.011 0.1 0.022 0.1 0.022 
1607 0.95 31.53 1.38 0.038 25.643 1.5 0.038 0.133 0.055 0.523 0.278 
1402 0.96 25.401 1.35 0.036 30.41 1.333 0.031 0.575 0.3 0.225 0.053 
1604 0.97 52.639 1.37 0.006 52.397 1.779 0.006 0.906 0.042 1.087 0.043 
1105 0.98 4.505 1.3 0.046 36.939 0.1 0.006 0.1 0.03 0.1 0.038 
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SID r 
DN Power Utility 

Pareto Uniform Pareto Uniform 
M a q M a q r q r q 

1005 1(*) 55.271 1.04 0.017 53.736 0.573 0.007 0.582 0.286 0.29 0.045 
1013 1(*) 60 1.54 0.004 58.779 1.346 0.016 0.984 0.319 0.881 0.075 
1104 1(*) 5.542 0.83 0.015 22.165 0.247 0.009 0.1 0.014 0.134 0.033 
1202 1(*) 59.606 1.44 0.015 60 1.698 0.009 0.999 1.115 1.229 0.03 

1203(**) 1(*) 60 0.1 1 60 0.1 1 0.1 5.389 0.1 42.832 
1204 1 59.894 1.46 0.006 60 1.603 0.007 0.947 0.041 1.016 0.034 
1205 1(*) 9.181 1.02 0.028 30.88 0.569 0.036 0.1 0.021 0.127 0.05 
1401 1(*) 34.454 0.77 0.015 56.078 0.928 0.012 0.305 0.071 0.364 0.053 
1603 1 55.57 1.42 0.015 55.573 1.85 0.035 0.896 1.05 0.991 2.048 
1409 1.01 23.842 0.96 0.144 36.602 0.1 0.039 0.1 0.106 0.1 0.204 
1513 1.01 28.602 0.94 0.017 62.8 1.125 0.013 0.391 0.117 0.645 0.247 
1012 1.02 64.681 0.76 0.018 21.882 0.885 0.025 0.431 0.175 0.191 0.047 
1613 1.02 64.294 1.08 0.015 60.575 0.993 0.013 0.672 0.412 0.404 0.048 
1505 1.05 26.584 1.46 0.027 23.729 1.501 0.02 0.187 0.059 0.495 0.236 
1608 1.09 73.339 1.74 0.093 85.689 1.691 0.074 0.1 0.101 0.1 0.066 

1305(**) 1.18 97.004 0.1 0.152 96.82 0.1 0.075 0.1 0.705 0.1 0.326 
1004 1.19 103.965 0.693 0.013 59.74 0.796 0.026 0.352 0.135 0.278 0.116 
1002 1.2 38.408 1.35 0.022 48.763 1.09 0.012 0.179 0.051 0.353 0.083 
1504 1.2 137.745 0.76 0.027 137.959 0.299 0.013 0.1 0.041 0.177 0.048 
1102 1.24 51.763 1.32 0.038 48.245 0.921 0.02 0.124 0.047 0.2 0.044 
1003 1.25 40.119 0.62 0.015 143.863 0.527 0.02 0.179 0.04 0.159 0.049 
1609 1.28 186.451 1.05 0.026 187.422 0.995 0.026 0.1 0.063 0.311 0.154 
1304 1.36 254.695 0.85 0.016 257.866 0.665 0.012 0.505 0.483 0.368 0.144 
1503 1.41 23.511 1.61 0.029 136.216 0.186 0.018 0.1 0.043 0.1 0.066 
1606 1.46 175.342 0.62 0.036 351.572 0.526 0.023 0.1 0.048 0.126 0.048 
1302 1.58 266.753 0.57 0.017 359.864 0.481 0.031 0.16 0.048 0.1 0.047 
1011 1.61 730.53 0.67 0.012 719.768 0.729 0.014 0.111 0.056 0.437 0.338 
1616 1.81 1154.46 1.33 0.097 1639.48 0.761 0.122 0.79 0.032 0.1 0.204 
912 2.28 1917.44 0.72 0.022 7816.41 0.494 0.008 0.1 0.048 0.825 0.03 

(*) These subjects had either a STAGE I estimate of r# = 0 or r# > 4. For those subjects we could not 825 
generate distributions of valuations for STAGE II that would adhere to our requirement to limit the number 826 
of trials with FOSD violations (when 𝜌# ⟶ 0), or without having to censor a very large tail of the Pareto 827 
distribution (when 𝜌# > 4). Instead, for these subjects we plugged-in 𝜌# = 1 to generate the distributions for 828 
STAGE II. 829 
(**) Subjects who had >20 FOSD violations in at least one of the treatments. 830 
  831 
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Table S5. Pooled estimates, dollar space. In practice, to allow a better identification of the model 832 
parameters, we estimated the parameter 𝜏, such that 𝜏 = 𝑀J. We recovered 𝑀 post-hoc by simply plugging-833 
in 𝜏 and 𝛼 into the equation. Standard errors in parentheses, + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.  834 

 835 
 836 

Model Parameter  All data Uniform Pareto All data (a) All data (M) 

DN α Constant 0.9660*** 0.9277*** 0.9184*** 0.8247*** 0.8535*** 
   (0.1321) (0.1763) (0.0955) (0.0815) (0.0840) 

  𝛼230456    0.1415***  

      (0.0399)  
 t Constant 42.3389*** 49.1992** 40.0310*** 42.8550*** 65.5239*** 
   (11.6202) (15.3108) (9.0071) (10.0872) (16.8167) 

  𝜏230456     -29.2557** 

       (11.2962) 

 𝑀 = τ
!
J Constant 48.3049 66.6531 55.5609 95.2584 134.3315 

  𝑀230456     -52.225174 
 q  0.0918** 0.0920* 0.0705*** 0.0760*** 0.0641*** 
   (0.0284) (0.0405) (0.0160) (0.0181) (0.0148) 
 BIC  32921.34 14239.49 18263.75 32492.85 32513.34 

 N  48,640 24,320 243,20 48,640 48,640 

Power  r Constant 0.5519*** 0.5749*** 0.5569*** 0.5106***  

Utility   (0.0393) (0.0469) (0.0396) (0.0375)  

  𝑟230456    0.0696***  

      (0.0169)  

 q  1.4318*** 1.8637** 1.2005*** 1.3520***  

   (0.3598) (0.5752) (0.2695) (0.3218)  

 BIC  33113.26 14258.23 18375.14 32662.57  

 N  48,640 24,320 243,20 48,640  


