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Recent theoretical models challenge the existence of a probability weighting function as it was 

traditionally conceived in Prospect Theory in ways that are not straightforward to test using choice 

data. This study transcends these constraints by directly observing probability distortions in the brain, 

free from utility confounds. Utilizing a unique dataset comprising 64,175 decision trials and 78,067 

neural measurement trials, we pinpoint neural activity (a basic biological decision processing unit) that 

exclusively encodes probability, independent of payoff magnitudes. Our results demonstrate that the 

observed neural probability weighting functions are S-shaped, which is optimal in our experimental 

environment, but diverge from those estimated from behavior under conventional assumptions. 

Incorporating biologically realistic utility functions in the estimation enhances our ability to 

reconstruct neural probability weighting from observed choices, offering direct biological evidence on 

the bases of economic decision-making. 
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1. Introduction 
 

The probability weighting function, alongside the reference-dependent utility and discount function, 

is a cornerstone of the behavioral economics toolkit. In their seminal paper on Prospect Theory, 

Kahneman & Tversky (1979) proposed that in decisions involving small stakes and risk, people weigh 

probabilities differently than their objective value. They assign "decision weights" to probabilities 

using an inverse S-shaped probability weighting function. This explanation rapidly got adopted into 

both theoretical and empirical social science research. Probability weighting has attracted significant 

and sustained attention – a vast amount of social science research utilizes the concepts of probability 

weighting to inform theoretical and empirical frameworks, influencing behavior-altering policies in 

finance, environmental conservation, health, social sectors, and beyond. This key behavioral 

economics concept is taught to all students in economics, psychology, finance, and marketing.   

 

Despite significant progress, accurately measuring the probability weighting function remains a 

challenge. A major obstacle is that the utility and probability weighting functions are not directly 

observable in standard economic data. Instead, they are typically estimated from people’s choices over 

lotteries with varying payoffs and probabilities, under the assumption that utility and probability 

weighting are separable and context-independent. However, this assumption has come under 

increasing scrutiny. A recent meta-analysis of Prospect Theory parameters by Imai et al. (2025) found 

that the estimates of utility and probability weighting parameters (both elevation and likelihood 

sensitivity) are correlated1 and violate procedure invariance. Similarly, Fehr-Duda et al. (2010) showed 

that probability weighting varies with the size of the payoff. Additionally, recent theoretical work 

suggests that behaviors originally attributed to probability weighting may instead be explained by 

context-dependent utility (Bordalo et al., 2012; Glimcher & Tymula, 2023; Kontek & Lewandowski, 

2018; Schneider & Day, 2018). Supporting this view, Bruhin et al. (2022) empirically demonstrated 

that the frequency of Allais paradox violations can be equally well explained by salience effects as by 

probability weighting. Together, these findings highlight the difficulty of disentangling utility and 

probability weighting econometrically. They suggest that the standard Prospect Theory framework 

may be missspecified and raise the possibility that a distinct probability weighting function may even 

not exist independently of the utility of outcomes.  

 

 
1 Probability weighting parameters, elevation and likelihood sensitivity, are not correlated in their study. 
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In this paper, we integrate methods from neuroscience and economics to open the black box of 

probability weighting by directly measuring neural activity at the level of single neurons as participants 

choose between lotteries. We pursue three main goals. First, we verify whether a neural signature of 

probability weighting—independent of utility—exists. If no such signal were present, it would suggest 

that Prospect Theory is purely descriptive and misaligned with the underlying mechanism that guides 

decision-making. However, we find a clear neural evidence for probability coding that is separate from 

utility. This allows us to measure probability weighting directly, without utility confounds. Notably, 

the S-shaped neural probability weighting we observe closely approximates a function that would 

maximize earnings in our experimental environment. Second, we assess whether the neural probability 

weighting aligns with the probability weighting estimated from behavior using standard structural 

model that assume a power (or CRRA) utility function. A close match would imply that concerns about 

misestimation due to utility confound may be overstated. Contrary to this, we find a substantial 

mismatch between the neural and behaviorally estimated probability weighting. This leads us to our 

third aim: identifying the source of this mismatch. We find evidence suggesting that not accounting 

for context-dependent utility may be the reason. If, as previous work suggests, behaviors traditionally 

attributed to probability weighting can be explained—at least in part— by context-dependent utility, 

then using a structural model with a fixed, context-independent utility function is likely to introduce a 

bias when estimating probability weighting. Indeed, we show that once we account for salience 

(Bordalo et al., 2012) or value normalization (Glimcher & Tymula, 2023) in the utility function, the 

behaviorally estimated probability weighting functions more closely resemble those observed in neural 

activity.  

 

Several features of our experimental design are particularly noteworthy. We measure probability 

weights directly in the brain without confounding it with the utility function, and then compare it to 

the probability weighting function estimated from behavior based on a large number of decisions. Our 

unique dataset consists of 64,175 decisions made by two monkeys and 78,067 single-lottery trials in 

which monkeys did not make any decisions and their brain activity was recorded while they anticipated 

the receipt of a lottery. Our experimental design overcomes the shortcomings of previous studies in 

several ways. First, in our study, brain activity is recorded using electrodes implanted directly into our 

subjects’ brains. This means that even though the brain activity is inherently noisy, on each trial we 

observe neural response to our task stimuli precisely with zero measurement noise—something not 
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achievable with fMRI or EEG.2 Second, the lotteries are randomly drawn from a fully crossed set of 

100 combinations of ten payoffs and ten probabilities, eliminating any structural correlation and ruling 

out alternative explanations of probability distortion, such as distributional effects in  Frydman & Jin 

(2023), Stewart et al. (2006), and Herold & Netzer (2023). Third, by recording brain activity only 

during single-lottery presentations, we avoid context effects related to choice sets. Fourth, our design 

allows us to identify neurons that respond selectively to probability but not payoff magnitude, enabling 

a clean measurement of the probability weighting function. Finally, by combining neural and 

behavioral data, we are able to validate the predictive power of our neural measurement out-of-sample, 

establishing its behavioral relevance.  

 

While the use of non-human subjects is not standard in economics, many studies provided evidence 

that non-human primates are a good model for human behavior (Kagel et al., 1995; Platt & Glimcher, 

1999; Tymula et al., 2023; Yamada et al., 2013). Conducting studies with monkeys offers several 

unique advantages. Firstly, many decisions can be obtained for reliable and precise estimates of 

probability weighting from behavior, which is not feasible with human participants in a laboratory 

setting. Consequently, human studies tend to produce noisier estimates than desired. Monkeys in our 

study perform the task over many months, yielding a dataset of 64,175 decisions allowing us to 

estimate structural models with high precision. Secondly, experimental economists often question 

whether the relatively modest laboratory incentives motivate participants enough to elicit their true 

preferences as well as about the external factors unobservable to the experimenter. In our study, we 

have full control over the monkeys' economy and manage their hydration status (i.e., physical wealth 

in water content) throughout the study. The subjects are rewarded with beverage lotteries, and the 

liquid they earn while performing the task is their only source of hydration. They are also compensated 

for every decision they make. Overall, this places them in an environment with more consequential 

decisions spread over a much longer period compared to a traditional economic experiment. Finally, 

the direct neural recordings that provide a much better signal-to-noise ratio are not available for human 

studies except in very specific patient populations performed by a neurosurgeon as a part of medical 

treatment (Kandel et al., 2021). Although previous studies have estimated probability weighting 

functions from the behavior of non-human primates (Farashahi et al., 2018; Ferrari-Toniolo et al., 

2019; Fujimoto & Minamimoto, 2019; Imaizumi et al., 2022; Stauffer et al., 2015; Tymula et al., 

2023), no study to date has attempted to isolate it from neural activity. In our previous study (Imaizumi 

 
2 Electrophysiology is superior to fMRI in the quality of neural recordings due to higher temporal and spatial resolution. 
fMRI is also susceptible to artifacts related to motion, physiological processes, and scanner noise. 
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et al., 2022), we have shown that by aggregating neural activity throughout the reward circuitry, we 

could reconstruct from this neural activity the risk preferences estimated from monkeys’ behavior, 

however, in that study, we did not attempt to measure probability distortions separately from utility 

and instead we estimated them jointly, as has typically been done in the economics literature, meaning 

that both the utility and probability weighting functions could be biased by both the functional 

assumptions and joint estimation procedure. This study makes a unique contribution that leverages the 

methodological benefits of non-human primate studies, to precisely isolate probability weighting 

function in neural activity and avoid such confounds. 

 

By analyzing single neuron activity, which is the biological basis of the brain function, we show that 

the brain can encode probability and utility through distinct neural channels. Some neurons in our 

dataset encode probability only (and not payoff), some encode payoff only (and not probability), and 

some encode both probability and payoff magnitudes. Importantly, these different types of neurons are 

intermingled across brain regions and co-exist in relative proximity to one another. This indicates that 

using fMRI, another method frequently used to record human brain activity that lacks the resolution 

of single-neuron recordings, it would be nearly impossible to isolate the probability weighting function 

from the utility function and to gain a new understanding of how our neural valuation system processes 

probabilities. 

 

Crucially, we use our neural data to illustrate the shape of the probability weighting function. For both 

subjects, the neural probability weighting is S-shaped. Although this is in contrast with Prospect 

Theory, we demonstrate that this shape aligns with a function that would maximize expected earnings 

in for a chooser with a noisy and bounded representation of probabilities. Importantly, this S-shape 

contrasts with the probability weighting function estimated from the same subjects’ behavior. We 

investigate several possible explanations for this discrepancy. First, we confirm that the neural signal 

robustly predicts choice, ruling out the possibility that the neural measure is behaviorally irrelevant. 

Next, we examine whether the mismatch could arise from choice complexity (Enke & Graeber, 2023) 

or the restrictive assumptions on the utility function in the behavioral estimation. A growing theoretical 

literature (Bordalo et al., 2012; Glimcher & Tymula, 2023; Kontek & Lewandowski, 2018; Schneider 

& Day, 2018) shows context-dependent utility can mimic probability weighting-like behavior, even 

when individuals perceive probabilities objectively. We find that when using a more realistic context-

dependent utility function that adapts to salience or is normalized, the gap between neural and 

behavioral estimates narrows substantially.  
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Together, our results underscore the importance of moving beyond standard structural models when 

estimating probability weighting. Our findings suggest that neural data can reveal distortions in 

probability perception that are otherwise confounded or misrepresented in behavioral estimates. 

Moreover, the observed S-shape in neural probability weighting aligns with a reward-maximizing 

behavior in our experimental setting, offering a normative account of its origin (Vieider, 2025). By 

combining high-resolution neural recordings with behavioral estimation, we advance both the 

measurement and interpretation of probability weighting, one of the foundational constructs of 

behavioral economics. 

 

In the following sections, we describe the experimental design, present the results, and then conclude. 

 

2. Experimental design 
 

The subjects in our study were two rhesus monkeys, named SUN and FU. They participated in two 

types of tasks, both involving lotteries but differentiated by the presence or absence of choice. In the 

"single cue no choice task," a lottery was presented without an alternative, whereas in the "choice 

task," the subjects chose between two lotteries presented on the screen. Since the subjects had no use 

for money, their rewards were given in the form of juice/water, delivered after each trial. We designed 

one hundred lotteries by crossing ten payoff magnitudes (ranging from 0.1 to 1.0 mL in 0.1 mL 

increments) with ten probability levels (from 0.1 to 1.0 in 0.1 increments). These amounts were chosen 

so that they are a detectable but not too large to ensure that the participants are incentivized to keep 

choosing for a sufficient number of trials. One mL is approximately 0.33-0.5% of our participant’s 

daily water consumption during the experiment. The lotteries' payoff and probability magnitudes were 

visually communicated using pie charts: the payoff magnitude was indicated by the number of green 

segments, and the probability level by the number of blue segments. Figure 1 illustrates an example 

trial, where the subject is choosing between a lottery on the left that pays 0.5 mL of water or nothing 

each with a 50% chance and a lottery on the right that pays 0.2 mL of water with a 90% chance and 

nothing with 10% chance. After ten months of intensive training, the animals demonstrated a robust 

understanding of the tasks and stimuli and the probability with which they selected a lottery was 

increasing in its expected value and decreasing in the expected value of the other lottery (Imaizumi et 

al., 2022; Tymula et al., 2023). The data analyzed in this study was collected only after the completion 

of the training phase, ensuring the subjects' proficient comprehension of the stimuli. The monkeys 

performed these tasks five days a week to earn liquid rewards. 
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Figure 1. Example trial in choice task. The number of green pie segments represents payoff size in 
(each green pie = 0.1 mL) and the number of blue segments represents the probability (each blue pie 

= 10%).  
 

Single cue no-choice task. The single cue no choice task was used for examining neural probability 

weighting function. The advantage of this task is that there is no other option in the choice set to create 

choice set effects in the utility function that could create confounds for the estimation of the probability 

weighting function. Even though the participants do not make a choice from a binary choice set in this 

task, they still need to stay alert and look at the lottery to receive it. To initiate each trial, monkeys had 

two seconds to align their gaze to the gray central fixation target. After fixation for one second, one 

pie chart providing information on the probability and magnitude of one lottery was presented for 2.5 

seconds at the same location as the central fixation target. During these 2.5 seconds, brain activity was 

recorded. We calculate each neuron’s activity (firing rate, FR) as the sum of the occurrences of action 

potentials3 that it produced during the 2.5-second presentation of the lottery before the payoff is 

received (i.e., the frequency of the single neuron activity). The pie chart was then removed, and 

subjects received a liquid payoff, as indicated by the number of green pie chart segments, with the 

probability indicated by the number of blue pie chart segments. After 4–6 seconds, the next trial began. 

On each trial, one lottery was randomly selected, with replacement, from the set of one hundred 

possible lotteries. The timing of the sequence of the screens is similar to other studies of this type and 

achieves two goals. First, it gives participants sufficient time to respond (one second is enough for 

monkey to respond). Second, it provides the necessary 300-400 ms delay to observe neural activity on 

each trial. Overall, SUN and FU completed 38,678 and 39,389 single cue no-choice task trials 

respectively during which we measured the brain activity in 686 neurons, located across four brain 

regions associated with the computation of value: dorsal (DS) and ventral (VS) striatum, central part 

of orbitofrontal cortex (cOFC), and medial orbitofrontal cortex (mOFC). See Table 1 for the number 

 
3 An action potential is a brief electrical impulse that serves as the primary means of communication throughout the 
nervous system. It's a fundamental element of neural activity, allowing neurons (nerve cells) to transmit signals over long 
distances within the body. 
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of neurons whose activity was recorded in each region in each subject. Single cue no choice task trials 

were presented in blocks of 100-120 trials.  

 

Table 1. The number of neurons which activity was recorded by brain region and subject. 

 Monkey  
brain region SUN FU Total 

DS 98 96 194 
VS 89 55 144 

cOFC 98 92 190 
mOFC 64 94 158 
Total 349 337 686 

 
 

Choice task. As in the single cue task, at the beginning of each trial, subjects had two seconds to align 

their gaze to the gray central fixation target. After fixation for one second, two lotteries, randomly 

selected from the set of one hundred, were presented to monkeys as pie charts for 2.5 seconds. After 

2.5 seconds, two smaller gray circles appeared at the same location as lotteries together with a fixation 

target in the middle. After a 0.5-second delay, the fixation target disappeared. Subjects were then 

allowed 2 seconds to make their choice by shifting their gaze to the lottery that they preferred. Then, 

they received a reward according to the payoff and probability magnitudes they selected. After 4–6 

seconds another trial began. Subjects completed approximately 30 to 60 trials of the choice task before 

switching to the single cue no-choice task or ending the experimental session. Our dataset includes 

44,883 decisions made by monkey SUN (obtained in 884 blocks spread over 242 days) and 19,292 

decisions made by monkey FU (obtained in 571 blocks spread over 127 days). During choice task 

neural activity was not recorded. Further details on methods, including details that would be 

particularly of interest to neuroscientists, are provided in (Imaizumi et al., 2022). 

 

3. Results 

 

3.1 Identification of decision-relevant probability and payoff neurons 

 

We begin by questioning whether it is biologically possible to observe utility and probability signals 

as distinct entities in the brain. If it was not, this would raise doubts about whether traditional economic 

models, such as Expected Utility and Prospect Theory, accurately reflect neural processes and whether 

the brain truly separates the encoding of payoff magnitudes and probabilities. Regardless of the 

answer, resolving this issue is crucial for how we conceptualize and interpret theories of risky choice. 
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However, this question remains open, as previous studies on neural probability weighting have not 

analyzed data at the level of individual neurons to identify separate neural signatures of utility and 

probability weighting. 

 

3.1.1 Identification of probability and payoff neurons 

 

To identify neurons that respond to probability and/or payoff magnitude, we divided our one hundred 

lotteries into categories of high (>50%) and low (≤50%) probability of receiving the payoff, and high 

(>0.5ml) versus low (≤0.5ml) payoff magnitude. For each neuron, we conducted two t-tests. The first 

test compared its activity in trials featuring lotteries with high versus low probability, and the second 

test compared its activity in trials with high versus low payoff lotteries. We defined neurons as 

probability neurons and payoff neurons if their respective t-tests were significant at the 5% level. This 

method was chosen over linear regression as it does not assume a specific functional form for 

probability representation in the brain4. It only requires that the average activity between low and high-

probability trials is significantly different, which should hold under any pattern of probability coding. 

Probability-only neurons, if they exist, are particularly interesting as their activity in response to 

probability is not confounded by payoff magnitude. 

 

Our initial findings, presented in Figure 2, show that neurons sensitive only to probability and neurons 

sensitive only to reward magnitude exist. In our sample, 22.6% of neurons encode probability 

exclusively, 18.7% encode payoff only, and 14.0% encode both probability and payoff. The discovery 

of neurons sensitive to probability but not payoff magnitude is crucial because it allows us to observe 

how probability is encoded in these neurons without interference from value or expected value signals. 

 

Another insight is that both probability and payoff neurons are distributed across all four valuation 

regions of the brain. None of these regions is exclusively dedicated to either probability or payoff 

magnitude. This suggests that if the human brain shares this property, fMRI studies, which measure 

aggregated activity per voxel (a unit typically consisting of about one million neurons), may not be 

able to isolate the neural representation of probability weighting independent of the utility function. 

Thus, direct recordings from single neurons provide a unique opportunity to precisely measure how a 

chooser processes objective probability information.  

 
4 Previous studies in neuroeconomics, often used a linear regression to identify neurons sensitive to payoff magnitude. In 
the appendix, we show that this type of selection makes little difference to our results. For our purposes, our selection 
procedure allows us to remain agnostic about the functional form. 
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In the main body of the paper, we present findings from analyses that include only neurons 

significantly responsive to probability but not to payoff magnitude. Like prior studies (Enomoto et al., 

2020; Yamada et al., 2013, 2018), we observe that some neurons respond positively and others 

negatively to payoffs. Similarly, across all four brain regions, we identify neurons that are significantly 

more active, as well as those that are significantly less active, in high versus low probability trials. In 

the paper, we include probability only neurons that respond positively or negatively to probability. In 

the appendix, we further validate the robustness of our results through supplementary analyses that 

incorporate all neurons that positively respond to probability. 

 

 
Figure 2. Proportion of neurons in our sample that encode probability only (dark gray), payoff 

only (light gray), and both probability and payoff (bottom bar) across dorsal striatum (DS), 
ventral striatum (VS), central orbitofrontal cortex (cOFC) and medial orbitofrontal cortex (mOFC). 

 

3.1.2 Neural prediction of lottery choice 

 

The activity of our probability and payoff neurons in the single-cue no choice task is interesting to 

economists only if they predict choice out of the sample. We find that their activity in the no choice 

task correctly predicts about 87% of decisions in the choice task. To calculate this percentage, for each 

of the 100 lotteries we calculated its associated average neural activity, which we will now refer to as 

neural subjective value as a shortcut. Since neural activity is observable, there is no need for estimation. 

Simply, for each of the 100 lotteries, and for each subject separately, we calculate the average neural 

activity across all instances when this lottery was presented. We base this measure on the activity of 

all neurons that either coded probability or payoff magnitude (not both). The activity of neurons that 
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have a negative relationship with probability and/or payoff magnitudes is subtracted. To make sure 

that all neurons whose activity was measured in the study have the same impact on the neural 

subjective value, we first calculate the average activity for each lottery within a neuron and then 

average it across neurons. Using the calculated neural subjective value, we predicted that subjects 

would choose the lottery with the higher neural subjective value in each trial. The prediction accuracy 

was remarkably high, with subjective values predicting 87.22% of choices correctly for SUN and 

87.74% for FU.  

Another way to check whether neural data predicts choice is to run a logistic regression with choice as 

a dependent variable and average neural subjective value of each lottery as independent variables and 

compare this to a traditional logit with lottery information (probabilities and magnitudes) as 

independent variables. We present this analysis in Table 2. The dependent variable is equal to 1 if 

participant selected lottery 1 and 0 if participant selected lottery 2. In “neurons” model, we include 

only the neural subjective value variables (calculated according to the description in the paragraph 

above). In “lottery info” model, we include only the information about the lottery probability and 

magnitude that participants saw on the screen. In “both” model, we include both. Comparing the 

performance of “neurons” and “lottery info” models, it is evident that our out-of-sample neural 

measurements of subjective value are as good as the probability and magnitude information in 

predicting choice. Moreover, comparing the loglikelihood of “both” and “lottery info” models, we see 

that adding neural measurements to a traditional model with just lottery parameters (probability and 

magnitude) as explanatory variables, substantially increases loglikelihood, demonstrating the 

additional predictive power from neural measurement. 

 

Table 2. Neural and behavioral predictors of choice. Logistic regression with dependent variable = 
1 (=0) if participant selected lottery 1 (2). FRn is the neurally measured subjective value of lottery n. 
pn and mn are the probability and magnitude of lottery n. 

  SUN FU 
  neurons lottery info both neurons lottery info both 

FR1 0.8349***  0.5579*** 0.8528***  0.4514*** 

 (0.0085)  (0.0156) (0.0136)  (0.0197) 
FR2 -0.7701***  -0.4984*** -0.8590***  -0.6038*** 

 (0.0082)  (0.0156) (0.0137)  (0.0208) 
p1  6.4320*** 2.3598***  7.4183*** 4.8205*** 

  (0.0761) (0.1362)  (0.1284) (0.1916) 
m1  7.1348*** 3.4433***  6.6290*** 4.7988*** 

  (0.0799) (0.1301)  (0.1212) (0.1622) 
p2  -5.7977*** -2.2544***  -7.2448*** -3.3076*** 

  (0.0725) (0.1355)  (0.1269) (0.1869) 
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m2  -6.5482*** -3.3600***  -6.4980*** -3.6982*** 

  (0.0767) (0.1301)  (0.1204) (0.1589) 
constant 0.1078*** -0.6546*** -0.0064 0.1740*** -0.0052 -1.0355*** 

 (0.0168) (0.0572) (0.2169) (0.0274) (0.0893) (0.2010) 
N 44,883 44,883 44,883 19,292 19,292 19,292 
pseudo R2 0.5796 0.5679 0.5679 0.5904 0.593 0.6474 
log likelihood -13080 -13443 -12302 -5475 -5440 -4713 

 

The accuracy with which our neural measurements predict choice is notable for several reasons. 

Firstly, our predictions are done out-of-sample. The neural recordings are collected in the single cue 

no-choice tasks and are then used to predict decisions in a separate task when participants decide which 

lottery they prefer. This creates a time separation between the measurements. Additionally, the context 

of presenting two lotteries at a time in the choice task likely influences the subjective value in ways 

not detectable in neural data from single-lottery presentations (Louie et al., 2013). Finally, we recorded 

only from a subset of neurons in the brain's value regions. The ability of this subset to predict out-of-

sample behaviors so accurately is impressive.  

 

In conclusion, we find evidence that the brain is capable of separately encoding probability and payoff 

magnitude, as commonly assumed in popular economic models of choice. For the first time, we 

demonstrate that the brain can be conceptualized as dedicating distinct neurons to encoding payoff 

probability and others to encoding payoff magnitude. Leveraging this discovery, we utilize the neural 

probability-payoff separability to describe the shape of the neural probability weighting function in 

the following section. 

 

3.2 Neural probability weighting function 

 

We have established that our neural measurements can predict choices and that there are neurons 

specifically sensitive to probability which activity is not confounded by value signals. In Figure 3, we 

present the neural probability weighting function. This figure is based on the activity of neurons that 

solely encode probability and do not encode payoff, providing the cleanest measure of brain’s response 

to probability. This dataset comprises 17,958 neural measurements (9,304 for SUN and 8,654 for FU) 

collected from 155 neurons (82 for SUN and 73 for FU). To construct Figure 3, we first calculate the 

average activity of each neuron at each probability level. We then compute the overall average activity 

at each probability level across all neurons, incorporating neurons that negatively respond to 

probability with a negative sign. This method ensures that all neurons contribute equally, regardless 
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of the number of measurements recorded from each. To facilitate a direct comparison between 

probability weighting functions measured behaviorally and in the brain function, we transform this 

neural measure to a scale of [0,1] using the formula for the neurobiological probability response ratio 

(NPRR) previously used by Berns (2008): 

𝐹𝑅!"#$ = %&'%&!"#
%&!$%'%&!"#

  

where 𝐹𝑅 is the actual average firing rate at a given probability level, 𝐹𝑅$(!is the lowest and 𝐹𝑅$)* 

is the highest average firing rate across all probability levels. As the NPRR is an affine transformation, 

it does not distort the curvature of the neural probability weighting function. We find that the neural 

probability weighting in each monkey is slightly S-shaped. We confirm this by fitting 𝐹𝑅!"#$ with a 

two-parameter probability weighting function 5 , 𝑤(𝑝) = +,&

+,&-(/',)&
,  using nonlinear least-squares 

estimation via nl command in Stata (see Table 3 “neural” for the parameter estimates). The 	
𝛾	parameter,	which	gives	the	function	S-shape	does	not	statistically	differ	between	the	subjects.	
The	𝛿	parameter is significantly higher for FU (𝑝 < 0.001) which captures that the fixed point, 

𝑤(𝑝) = 𝑝, occurs for lower probability for FU. 

 
Figure 3. Neural probability weighting function. Includes data from all neurons that significantly 
respond to probability but do not respond to payoff magnitude. The dots represent 𝐹𝑅!"#$ and the 
solid curves are Goldstein and Einhorn (1987) two-parameter probability weighting functions that 

best fit the neural data. 

 
5 In Tymula et al. (2023), we conducted a horserace between the expected value, expected utility, and prospect theory 
models with four different probability weighting functions using the same behavioral dataset (but we did not analyze the 
neural data). We used power utility function and various probability weighting functions (Goldstein & Einhorn, 1987; 
Kahneman & Tversky, 1979; Prelec, 1998). We found that prospect theory models with a two-parameter probability 
weighting function provided the best fit to behavioral data according to the Bayesian Information Criterion (BIC) (see Fig 
2 in Tymula et al. (2023)). Following this finding, here we use the two-parameter probability weighting function (Goldstein 
& Einhorn, 1987).   
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In the Appendix, we conduct several robustness checks to validate our findings through three 

alternative approaches. First, we analyze the data using only those probability-only neurons that show 

a positive response to increasing probability, excluding any neurons whose activity decreases with 

probability magnitude (Figure S1). Second, we broaden our dataset to include all neurons that react to 

probability magnitude, encompassing those that also respond to both probability and payoff 

magnitudes (Figure S2). Third, we employ a different classification method for neurons; here, each 

neuron is classified as coding for probability and/or payoff magnitude based on whether its activity 

significantly ( 𝑝 < 0.05 ) correlates with either lottery probability or payoff magnitude. This 

classification is determined by a linear regression model (𝐹𝑅 = 𝑏1 + 𝑏/ ∗ 𝑝𝑎𝑦𝑜𝑓𝑓 + 𝑏2 ∗

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) run separately for each neuron (Figure S3). The results from these varied approaches are 

qualitatively similar, i.e. that the neural probability weighting function is slightly S-shaped, reinforcing 

the consistency of our original findings (Figures S1 - S3). These additional analyses enhance our 

confidence in the robustness of our results and that our original observations are not an artifact of the 

specific subset of neurons, or the method of analysis used in the main study. 

 

3.3 Neural probability weighting – why is it curved? 

 

Our neural probability weighting function clearly demonstrates that neurons distort objective 

probabilities, but the distortion pattern contradicts the commonly accepted inverse-S shape found in 

the literature. One possible explanation for this discrepancy is that the probability weighting function 

is not driven by fixed probability weighting parameters but is instead adaptive, shaped by the specific 

environment we created in the laboratory. Several contemporary theories suggest that probability 

weighting functions adapt to the complexity and statistical properties of the environment. Therefore, 

next we examine whether the observed neural probability weighting functions align with these theories 

given the experimental conditions we established for our participants.6 

 

3.3.1 Cognitive complexity 

 

Enke & Graeber (2023) argue that as cognitive uncertainty increases, probability weighting functions 

become attenuated and regress toward the intermediate option. In other words, in decisions 

characterized by higher cognitive uncertainty, the probability weighting functions should be shallower. 

 
6 We postpone the discussion of theories that suggested that probability weighting depends on other alternatives in the 
choice set (Bordalo et al., 2012; Glimcher & Tymula, 2023; Kontek & Lewandowski, 2018) to behavioral data analysis 
in a later section because neural recordings were made when only one lottery was shown and available. 
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They further propose that cognitive uncertainty is inherently linked to the complexity of the decision 

problem. Our study was not specifically designed to examine the effects of choice complexity. We did 

not purposefully manipulate complexity in our experimental design, and the single-cue no-choice trials 

do not involve meaningful complexity. However, since blocks of the single-cue no-choice task are 

interleaved with blocks of the choice task, it is possible that naturally occurring complexity or cognitive 

uncertainty from the choice task blocks could have influenced the neural probability weighting 

function measured in different blocks. Given the novelty of our data and the growing interest in 

complexity and cognitive uncertainty, we explore this aspect within our experimental framework. 

 

First, we investigated whether certain lottery probabilities are systematically associated with more 

difficult choices on average. We define trials as more cognitively uncertain or complex when the 

expected values of the two lotteries being compared are harder to distinguish. For each trial within the 

choice task, we calculate the absolute value of the difference between the expected values of the two 

lotteries. We then average these differences across all trials and participants. In Figure S4, we plot this 

difference as a function of lottery probability.  

 

Our analysis reveals that the most challenging decisions occur most frequently for probabilities around 

0.3–0.4. According to Enke and Graeber’s (2023) argument, we would expect the probability 

weighting function to be the shallowest in this range and steeper for both lower and higher 

probabilities. However, this is generally inconsistent with the shape of our observed neural probability 

weighting function, likely because the potential effects of complexity may be too subtle to detect in 

our experiment. 

 

3.3.2 Efficient adaptation to the distribution of probabilities 

 

A series of theoretical models, choice data, and neural data  show that payoff and/or probability 

encoding functions are flatter (i.e. leading to discrimination difficulties) for values that are experienced 

less frequently or lead to lower financial benefits in given choice environment (Frydman & Jin, 2023; 

Glimcher, 2022; Glimcher & Tymula, 2023; Khaw et al., 2021; Netzer et al., 2025; Robson et al., 

2023; Stewart et al., 2006; Vieider, 2025; Woodford, 2012). The biological explanation for this 

phenomenon is based on the fact that brain is noisy and has a limited precision with which it encodes 

information for decision making. As a result, this body of work argues, choices are better (i.e. lead to 

higher expected payoffs or fewer errors) if they are guided by utility and probability weighting 

functions that adapt to the statistics of the environment. Empirical evidence supports this research with, 
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for example, Zhang et al. (2020) showing that probability weighting functions adapt to the range of 

probabilities used in the task.  

 

The exact methodological details differ among the papers that theoretically establish the optimal shape 

of the probability weighting function (Vieider, 2025). However, what they all have in common is their 

focus on justifying the frequently observed inverse S-shaped functions. For example, Stewart et al. 

(2006) observe that small and large probabilities are more frequently experienced than intermediate 

probabilities in language, in real life, and in the experiments that elicit probability weighting. 

Therefore, the probability weighting function is inverse-S shaped (thus steeper for low and high 

probabilities) to increase discriminability in these more frequently encountered probabilities. Frydman 

& Jin (2023) and Khaw et al. (2021) additionally argue that when cognitively uncertain choosers resort 

to the intermediate prior of 50% chance which leads to an inverse-S shape. So why do we instead 

observe S-shaped neural probability weighting function in our study? 

 

We suggest that the reason is because our task is unique relative to other experiments in that we 

uniformly sample the full space of probabilities (in 0.1 increments). This means that none of the 

probabilities is more frequently experienced than other probabilities while participants perform the 

study. Therefore, small and large probabilities should not be prioritized according to discriminability 

because they are not experienced more frequently. Another reason why our study is different to prior 

research, is because unlike in the experiments with human participants, we have full control of the 

prize distribution in the monkeys’ environment. They have spent many months learning the stimuli 

and then performing the task, all the time experiencing uniformly distributed probabilities. Over this 

period, on weekdays, all of their liquid consumption came from the decisions they made in the study. 

This gives us control over participants’ payoff environment that is unmatched by any study with human 

participants. As we demonstrate below, S-shaped probability weights should optimally emerge for 

choosers who want to maximize their payoffs in our experimental environment. This provides further 

support that the statistical probabilities of the choice environment influence observed probability 

weighting functions. 

 

To establish the optimal probability weighting function, we follow the approach in Glimcher et al. 

(2025). We assume that participants’ goal is to maximize their earnings. Since there is an infinite 

number of the candidate probability weighting functions to consider, to make our analytical approach 

feasible, we make the following simplifications: (1) we assume that the probability weighting function 
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is increasing in probability, (2) we follow the convention that 𝑤(0.1) = 0.17 and 𝑤(1) = 1, (3) we 

calculate the optimal probability weights for the remaining eight probability levels used in our 

experiment (from 0.2 to 0.9 in 0.1 increments), (4) we allow 𝑤(𝑝) to take values from 0.1 to 1 in 0.025 

increments, (5) without loss of generality, we assume that the payoff is always equal to 1, and finally 

(6) we assume that choosers encode utilities with and additive noise, 𝜀~𝑁(0, 𝜎2)8  and vary the 

standard deviation of noise from 0.05 to 0.9. While some of our assumptions may seem restrictive, 

they nevertheless leave us with 177,232,627 candidate probability weighting functions to evaluate.  

 

We proceed as follows: First, we generate all possible candidate probability weighting functions 

according to assumptions 1-4. Second, we generate all possible 45 binary choice sets that the 

participant could have faced in our study (we disregard choice sets where both options are equal). 

Since in our environment all probabilities are equally likely to occur, all the possible binary choice 

sets are also equally likely to be encountered. Next, for each possible binary choice set and for each 

candidate probability weighting function, we calculate expected earnings at a given level of noise. The 

expected earnings when choosing between getting the prize with probability 𝑝( or 𝑝3 are given by a 

standard formula: 𝐸𝑉[𝑝( , 𝑝3\ = Φ^45,'6'4
(,")

√28(
_ 𝑝3𝑢(1) + (1 − Φ^

45,'6'4(,")

√28(
_)𝑝(𝑢(1) , where 

Φ^45,'6'4
(,")

√28(
_ is the probability that the chooser picks 𝑝3. We calculate the expected earnings under 

a given probability weighting function at a given level of noise by adding the expected earnings for all 

45 possible choice sets [𝑝( , 𝑝3\. The program, written in R, is available in the online appendix. 

 

Figure 4 illustrates the probability weighting functions that maximize earnings in our experimental 

environment for different levels of noise. As one would expect when the level of noise is low, a linear 

probability weighting function (lightest gray) is optimal. When the noise level is high (dark line), the 

probability weighting function is a step-function—the noisiest chooser distinguishes between low and 

high probabilities but not within each of these categories. For the intermediate levels of noise, the 

optimal probability weighting function is S-shaped, just as observed in our neural data.  

 

 
7 The lowest probability stimulus in the study is 0.1 which is why we do not start at 0. 
8 The cumulative distribution function (CDF) of this distribution is denoted by Φ(. ) and the probability distribution 
function (PDF) as 𝜙(. ). 
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Figure 4. Optimal probability weighting functions for different levels of noise.  

 

3.4 Traditional behaviorally estimated probability weighting versus brain activity 

 

A series of theoretical papers (Bordalo et al., 2012; Glimcher & Tymula, 2023; Kontek & 

Lewandowski, 2018; Schneider & Day, 2018) have argued that neglecting the influence that all options 

in the choice set have on utility can lead to distorted estimates of the probability weighting function. 

Therefore, we next investigate whether the probability weighting functions observed in neural data in 

response to the presentation of a single lottery resemble those estimated from binary choices using 

standard behavioral economics methods which typically employ utility functions that do not account 

for the impact of the other alternatives on utility. If we see differences between the neural measured 

and behaviorally estimated probability weighting functions this may warrant an investigation into the 

unaccounted-for salience or normalization of value.  

 

Here, we use data from the choice task that contains the same subjects’ decisions made in different 

blocks of trials in the same experimental sessions. Using this data, we estimate probability weighting 

functions from behavior within a random utility framework. A lottery, denoted as 𝐿(𝑚, 𝑝) represents 
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a gamble that pays 𝑚  with probability 𝑝 , and 0 otherwise. We adopt a popular two-parameter 

probability weighting function (Goldstein & Einhorn, 1987)9: 

𝑤(𝑝) =
𝛿𝑝9

𝛿𝑝9 + (1 − 𝑝)9 

For the utility function, we use a power utility function, commonly utilized in economic literature: 

𝑢(𝑚) = 𝑚# 

The expected utility of the lottery is then calculated as 𝑈(𝐿) = 𝑤(𝑝)𝑢(𝑚). The probability that 

participants choose the lottery on the right side (𝐿&) over the one on the left (𝐿:) is estimated using a 

logistic choice function, 𝑃(𝐿&) =
/

/-;)*
 where 𝑍 = <(:+)'<(:,)

=
 and free parameter 𝜀  captures the 

degree of stochasticity observed in choice. We fit the data by maximizing the log-likelihood of the 

observed choices. All estimations are done in Stata 18. 

 

In Figure 5, just as in Figure 3, we replot the observed neural probability weighting with black dots, 

and the two-parameter probability weighting function that best fits the neural data is depicted as a 

black solid line. The black longdash line represents the probability weighting function estimated from 

behavior using the above model with power utility function. Visually, Figure 5 clearly suggests that 

the behavioral probability weighting function (longdash) substantially differs from both the observed 

neural activity (dot) and the estimated (solid line) neural probability weighting functions. One can 

further assess the statistical significance of these differences by comparing each subject's probability 

weighting parameters estimated from the neural data against those derived from behavioral 

measurements—see Table 3 under the headings 'neural' versus 'power'. For SUN, 𝛿 and 𝛾 parameters 

estimated from neural activity and behavior are significantly different at 0.001 and 0.1 significance 

levels respectively. For FU, 𝛿  and 𝛾  parameters estimated from neural activity and behavior are 

significantly different at 0.01 and 0.001 significance levels respectively.  

 

There is a stark mismatch between neurally measured and behaviorally estimated probability 

weighting and the behaviorally estimated probability weighting is markedly different form probability 

weighting that would be an efficient adaptation to the statistical properties of our experimental 

 
9 In Tymula et al. (2023), we conducted a horserace between the expected value, expected utility, and prospect theory 
models with four different probability weighting functions using the same behavioral dataset (but we did not analyze the 
neural data). We used power utility function and various probability weighting functions (Goldstein & Einhorn, 1987; 
Kahneman & Tversky, 1979; Prelec, 1998). We found that prospect theory models with a two-parameter probability 
weighting function provided the best fit to behavioral data according to the Bayesian Information Criterion (BIC) (see 
Fig 2 in Tymula et al. (2023)). Following this finding, here we use the two-parameter probability weighting function 
(Goldstein & Einhorn, 1987).   



 20 

environment (Figure 4). A potential explanation is that the neural measurements were done when only 

a single lottery was presented, and the behavioral measurements are estimated based on a choice task 

where two lotteries were presented at a time. It is possible that the other option affects utility and when 

this effect is unaccounted for, we get distorted probability weights estimated from behavior. Therefore, 

next we explore whether using more realistic utility functions that account for context created by other 

alternatives in the choice set will result in behaviorally estimated probability weighting functions that 

better match brain activity.  

 

 
 

Figure 5. Neural versus behavioral probability weighting function. Includes data from neurons 
that respond to probability but not to payoff magnitude. The dots are 𝐹𝑅!"#$ and the solid curve is 
Goldstein and Einhorn (1987) probability weighting function fit to neural data. The long dash and 
curve is Goldstein and Einhorn (1987) probability weighting function estimated using behavioral 

data (with power utility function).  
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Table 3. Neural and behavioral estimates of two-parameter Goldstein and Einhorn (1987) 
probability weighting functions. For the probability weighting parameters, 𝛼  and r stars indicate 
significant differences from 1. For the rest of the parameters from 0. Neural is the best fit for the neural 
data, power are the behavioral estimates using the power utility function, ESVT are behavioral 
estimates using the ESVT utility function, salience are the behavioral estimates using salience model. 
  SUN FU 
  neural power DN salience neural power DN salience 

 probability weighting parameters 
𝛿 0.949 2.419*** 1.124+ 1.598*** 1.539*** 1.963*** 0.915 1.158 

 (0.091) (0.055) (0.065) (0.035) (0.118) (0.075) (0.085) (0.038) 
𝛾 1.599** 1.314*** 1.715*** 1.354*** 1.768*** 0.982 1.219*** 1.034 

 (0.152) (0.022) (0.045) (0.022) (0.125) (0.023) (0.043) (0.022) 

 utility parameters 
𝛼 or r  0.879*** 1.657*** 0.614***  0.578*** 1.046 0.335*** 
  (0.016) (0.071) (0.016)  (0.019) (0.069) (0.018) 
𝜔   0.093***    0.070***  

   (0.007)    (0.009)  
𝜀  0.065*** 0.015*** 0.051***  0.064*** 0.022*** 0.053*** 

  (0.001) (0.002) (0.001)  (0.001) (0.003) (0.001) 
N 10 44883 44883 44883 10 19292 19292 19292 
BIC  19678 19494 19633  8681 8621 8949 

+ p<0.1,  * p<0.05, ** p<0.01, *** p<0.001      
 

3.4.1 Hidden influence of context-effects on behavioral probability weighting 

 

While it may be puzzling that neural and behaviorally estimated probability weighting functions do 

not align, Bruhin et al. (2022) have recently provided evidence from incentivized Allais Paradox 

experiments that choices that depart from Expected Utility are equally often driven by probability 

weighting and choice set context dependency, conceptualized in their case as salience (Bordalo et al., 

2012). This suggest that the context created by the other alternatives—which is usually ignored in the 

estimation of Prospect Theory parameters—can often explain observed “anomalies” as well as, or 

better than, probability weights. In addition to the salience theory (Bordalo et al., 2012), divisive 

normalization (Glimcher & Tymula, 2023), range normalization (Kontek & Lewandowski, 2018), and 

target adjusted utility (Schneider & Day, 2018) are other recent examples of models that theoretically 

and through simulated examples illustrated how unaccounted-for choice set context dependency in the 

utility function can bias the estimates of the probability weighting function. Next, we investigate 

whether using a more neurobiologically realistic utility function removes the mismatch between the 

neural and behaviorally-estimated probability weighting. As examples, we consider salience model for 

its popularity in economics (Bordalo et al., 2012) and divisive normalization model for its popularity 
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in neuroscience and neuroeconomics (Carandini & Heeger, 2012; Louie et al., 2013).10 We follow the 

same structural estimation procedures as in the beginning of this section, with some modifications for 

each model, as described below. 

 

To assess how incorporating salience influences the estimated probability weighting function, we 

follow the original salience model by (Bordalo et al., 2012). In the salience model, the expected utility 

of lottery 𝐿( is then given by: 

𝑈>(𝐿() = 𝑤(𝑝()𝑠(𝑚()𝑢(𝑚() 

where 𝑠(𝑚() is the relative salience of the states with payoff 𝑚( and the probability weighting and the 

utility function are defined as before. Let 𝜎(𝑥/, 𝑥2) =
|*-'*(|
*--*(

 be the salience function of the state where 

𝐿/  pays 𝑥/  and 𝐿2  pays 𝑥2  and 𝜎(0,0) = 0 . Then 𝑠(𝑚/) =
8($-,$()-8($-,1)

8($-,$()-8($-,1)-8(1,$()-8(1,1)
 and 

𝑠(𝑚2) =
8($-,$()-8(1,$()

8($-,$()-8($-,1)-8(1,$()-8(1,1)
. 

 

In the divisive normalization model, the expected utility of lottery 𝐿/ when choosing between 𝐿/ and 

𝐿2 is: 

𝑈AB(𝐿/, 𝐿2) =
𝑤(𝑝/)𝑚/

C

𝜀 + 𝜔(𝑤(𝑝/)𝑚/
C +𝑤(𝑝2)𝑚2

C) 

where  𝛼 is a parameter called predisposition. We follow Webb et al. (2021) and use parameter 𝜔 to 

nest the power utility model. If we estimate that 𝜔 = 0, we are back in the prospect theory framework 

with a power utility function where 𝜀 becomes the noise level. If 𝜔 ≠ 0, then we conclude that the 

utility of the lottery 𝐿/ is normalized by itself and the other elements of the choice set. The remaining 

details of the structural estimation are the same as before. 

 

Table 3 summarizes all the estimates. Regarding the divisive normalization model, for both SUN and 

FU, we find that the parameter 𝜔  is significantly different than zero. Moreover, the Bayesian 

 
10 Divisive normalization is a well-established neural computation found throughout the neural pathway from the retina to 
the cortex (Carandini & Heeger, 2012; Louie et al., 2011; Yamada et al., 2018). It has been theoretically demonstrated to 
be an efficient computation for encoding value (Steverson et al., 2019), especially with Pareto-distributed payoffs (Bucher 
& Brandenburger, 2022). Divisive normalization is a relevant model because it can account for many behaviors associated 
with Prospect Theory but without the probability weighting function or the discontinuity created by the loss aversion 
parameter (Glimcher & Tymula, 2023). It also effectively captures various choice set effects (Guo & Tymula, 2021; Khaw 
et al., 2017; Landry & Webb, 2021; Louie et al., 2013; Webb, 2020; Webb et al., 2021), and recent research suggests that 
our brains may universally use this encoding mechanism (Kurtz David et al., 2023). A comprehensive summary of this 
model and its historical context is provided elsewhere (Carandini & Heeger, 2012; Glimcher, 2022; Glimcher & Tymula, 
2023; Louie et al., 2015). We note that in our particular design where the other lottery payoff is always zero, other 
normalization models would not explain probability weighting. 
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Information Criterion is lower than in the traditional power utility function model, indicating a better 

fit. Based on these results—significant parameter values of 𝜔, slightly lower BIC—we conclude that 

behavioral data is more accurately estimated using the neurobiologically realistic utility function as 

specified by the divisive normalization model than using a simple power utility function. Regarding 

the salience model, we find that it offers a better behavioral fit for SUN, but not for FU.  

 

Next, we compare all models based on how well their estimates approximate the probability weighting 

function estimated in the brain. In Figure 6, we plot the probability weighting function in addition to 

the neural probability weighting (black dots and black solid best fit curve) and the behaviorally 

estimated probability weighting function with power utility function (dashed black line), we plot the 

estimated probability weighting function in the salience (red) and divisive normalization (blue) 

models. Visually both salience and divisive normalization models improve the match. In particular, 

for SUN, the blue curve estimated in the divisive normalization model closely aligns with the average 

neural probability weighting signal represented by black dots, indicating a near-perfect match.  

 

To formally assess how accurately the probability weighting functions estimated with salience, 

divisive normalization, and traditional power utility models approximate the neural measurements, we 

calculate residuals for each model. These residuals are determined by comparing each model's estimate 

of the probability weight to the averaged and normalized neural measurement at each probability level. 

We then compute the sum of square errors for these residuals.  

 

The results show that for both participants, the sum of square errors is lower for salience model than 

for the power utility model (0.007 vs. 0.028, p=0.020 for SUN and 0.008 vs. 0.016, p=0.286 for FU). 

Similarly, it is lower for the divisive normalization model than for the power utility model (0.002 vs. 

0.028, p=0.015 for SUN and 0.009 vs 0.016, p=0.468 for FU). This suggests that estimating behavior 

with the salience and divisive normalization models results in probability weighting functions that are 

a better description of the underlying neural activity. Comparing between the divisive normalization 

and salience models, we find that the prediction is significantly better for divisive normalization for 

SUN (p=0.043) but there is no difference (p=0.678) for FU. These findings support the superior ability 

of the recent models that account for the contextual effects created by the choice set to estimate the 

neural probability weighting from behavior, particularly evident in the SUN dataset. 
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Figure 6. Neural versus behavioral probability weighting functions. Includes data from neurons 
that respond to probability but not to payoff magnitude. The dots are 𝐹𝑅!"#$ and the solid curve is 
Goldstein and Einhorn (1987) probability weighting function fit to neural data. The long dash and 
curve is Goldstein and Einhorn (1987) probability weighting function estimated using behavioral 

data (with power utility function). The red and blue curves are Goldstein and Einhorn (1987) 
probability weighting function estimated using behavioral data using salience model (in red) and 

divisive normalization model (in blue). 
 

4. Discussion  
 

We demonstrate that probability weighting exists in the brain separately to the utility of payoffs. The 

observed probability weighting function is not linear. Instead, it is S-shaped. The normative literature 

on probability weighting has so far mainly focused on demonstrating under what circumstances the 

traditional inverse-S shape is efficient. For instance, Stewart et al. (2006) and Frydman & Jin (2023) 

argue that individuals are more likely to encounter small or large probabilities, leading to an argument 

for an inverse S-shaped probability weighting function that helps to distinguish between more 

frequently occurring probabilities. In our experimental design, probabilities are uniformly drawn from 

a range of 10% to 100%, in 10% increments, thus eliminating such advantage. We show that in such 

an environment S-shaped probability weighting would maximize earnings and this is the shape that we 

observe in brain activity. It is perhaps not surprising given that our subjects had an extensive 

experience with the stimuli which included 10-months-long training and then performed the task daily 

for another couple of months. The S-shaped distortions that we document offer a new outlook on 

probability weighting which is particularly relevant given that the existing theoretical explanations of 
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probability weighting largely focused on figuring out under what conditions probability weighting 

should be inverse S-shaped (Blavatskyy, 2007; Enke & Graeber, 2023; Herold & Netzer, 2023; Steiner 

& Stewart, 2016; Zhang et al., 2020) highlighting it may be additionally worthwhile to consider the 

flexibility in the shapes of probability weighting as well (Bordalo et al., 2012; Frydman & Jin, 2023; 

Glimcher & Tymula, 2023).  

 

Our paper represents a unique contribution. The measurement of probability weighting has been seen 

as a challenge for a long time. Previous researchers provided solutions by for example designing new 

nonparametric ways to estimate the utility and probability weighting functions without functional 

assumptions (Gonzalez & Wu, 1999), designing new experimental methods to estimate Prospect 

Theory parameters(Abdellaoui, 2000), or by asking participants for frequency judgements (Zhang et 

al., 2020). Ours is the first study to measure the brain’s response to probability through single-neuron 

activity dedicated solely to probability, and not payoff magnitude. This is the cleanest and most direct 

measurement of how the brain encodes probability that is possible using current technology. 

Consequently, the probability weighting functions we document are directly observed, rather than 

estimated from behavior, and are not confounded by or entangled with utility.  

 

Demonstrating that such signature of probability weighting can be measured in the brain opens the 

door to answering more complex questions in the future such as exploring how efficient coding 

constraints (Frydman & Jin, 2023; Glimcher, 2022; Glimcher & Tymula, 2023; Louie & Glimcher, 

2012; Polanía et al., 2019), perceptual factors (Oprea, 2024), and salience (Bordalo et al., 2012) relate 

to probability encoding in the brain. In our paper, we demonstrate the importance of using a realistic 

context-dependent utility function when recovering probability weighting from behavior. Notably, for 

both subjects, the probability weighting estimated from behavior closely aligns with (and for one 

subject, essentially mirrors) the neural measurement when we model utility using the canonical, 

divisive normalization utility model from neuroscience and neuroeconomics or incorporate salience. 

There is a big mismatch in the neural and behaviorally-estimated probability weighting if we instead 

use the usual power or CRRA utility function. This suggests that as our understanding of how the brain 

encodes value improves, we will become increasingly better at recovering probability weighting from 

behavior. 

 

Obtaining such high quality neural (and behavioral) measurements has been possible because the 

subjects in our study are macaques. While rhesus macaques are not human, they are primates, and we 

share roughly 93% of our DNA sequences (Wang et al., 2014). Many studies demonstrated a close 
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parallel between human and monkey behaviors and brain function. Economists many years before 

argued how economics can learn from animal studies (Kagel et al., 1995). This study is a perfect 

example that illustrates these advantages – we directly observe a noiseless probability weighting signal 

in the brain that is not accessible with choice data. We also observe a lot of decisions, ensuring that 

our estimated probability weighting from behavior is more reliable. Previous monkey studies estimated 

probability weighting from behavior (Farashahi et al., 2018; Ferrari-Toniolo et al., 2019; Fujimoto & 

Minamimoto, 2019; Imaizumi et al., 2022; Stauffer et al., 2015; Tymula et al., 2023) but none of them 

measured or reported probability weighting in single neuron activity. Additionally, our lotteries were 

constructed with the highest number of different probability levels in any monkey study so far, which 

enhances the precision of our measurement in both brain activity and behavior. The existing studies 

with monkey subjects were not conclusive about the shape of the probability weighting estimated from 

behavior but demonstrated that some features of how choices are presented affect the estimates, 

reinforcing the need for studies that establish how the perception of probabilities changes based on 

environment or experience (Ferrari-Toniolo et al., 2019; Tymula et al., 2023). 

 

Kahneman and Tversky, when they conceived prospect theory in the 1970s, could only rely on 

observed choices to guide their assumptions about how probability and payoff value are encoded. Since 

then, science has made remarkable progress. We can now directly observe neuronal activity that guides 

choice using a range of tools. A series of studies in the 2000s set out to measure and describe the 

functional properties of the probability weighting function using non-invasive functional magnetic 

resonance imaging (fMRI) techniques that measure brain activity by tracking blood oxygenation levels 

throughout the brain (Abler et al., 2006; Berns et al., 2008; Hsu et al., 2009; Preuschoff et al., 2006; 

Tobler et al., 2008). Remarkably, these neuroeconomic studies generally agree that value-coding areas 

of the brain are capable of encoding probability, both with and without distortions. Consistent with our 

finding that probability is encoded by neurons across different value regions in the brain, none of these 

earlier fMRI studies pointed to a specific brain region that encodes probability alone. Given that a 

typical unit of brain activity in an fMRI study (voxel) aggregates the activity of approximately half 

million neurons, it is unlikely that an fMRI study would be able to pick up probability signal 

independent of utility in a lottery choice task. We overcome this shortcoming by using a direct 

measurement of brain activity, employing the largest number of probability levels used to date with 

monkey subjects. While it is possible that our probability-only neurons, have other functions than just 

encoding probability, what is most important for our research is that they do not confound the 

probability and payoff magnitude. As such, they allow us to directly observe the probability weighting 

function, with as little measurement error as possible using the current technology. 
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Appendix 
 

 
Figure S1. Neural probability weighting function. Includes data from all neurons that significantly 
and positively (i.e. higher probability higher activity) respond to probability and do not respond to 

payoff magnitude. Best fit probability weighting parameters are 𝛿D<B = 0.634 with SE=0.059,  
𝛿%< = 1.219 with SE=0.106, 𝛾D<B = 1.812 with SE=0.153, and 𝛾%< = 1.947 with SE=0.160. 

 
 

 
 

Figure S2. Neural probability weighting function. Includes data from all neurons that significantly 
respond to probability (positively and negatively) including those that respond to payoff magnitude. 

Best fit probability weighting parameters are 𝛿D<B = 0.747 with SE=0.089,  𝛿%< = 2.627 with 
SE=0.306, 𝛾D<B = 1.452 with SE=0.172, and 𝛾%< = 1.775 with SE=0.157. 
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Figure S3. Neural probability weighting function. Includes data from all neurons that significantly 

respond to probability and do not respond to payoff magnitude. Neurons are included if they 
positively respond to probability as determined by a linear regression. Best fit probability weighting 

parameters are 𝛿D<B = 0.983 with SE=0.080,  𝛿%< = 1.582 with SE=0.143, 𝛾D<B = 1.384 with 
SE=0.115, and 𝛾%< = 1.437 with SE=0.124. 

 
 

 
Figure S4. Complexity in the choice task by probability level. Dots illustrate the absolute value of 

the difference in expected values of the lotteries on offer, averaged across all trials for both 
participants. 

 


