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Abstract

We present a neuroeconomic model for risky choice that specifies a utility function

that is context-dependent. We demonstrate how and under what conditions the model

generates choice (but not preference) reversals. In a laboratory experiment, we test

the predictions of our model and compare it against other popular models of context-

dependent choice. We find that divisive normalization captures violations of the in-

dependence of irrelevant alternatives that cannot be otherwise explained with salience

theory, range normalization, or attraction effect theories. Moreover, we identify a new

setting in which the well-established attraction effects do not occur.
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1 Introduction

Traditional economic theory prescribed that preference and choice between two alternatives

should not be altered by the inclusion of another alternative to the choice set. This normative

feature is captured by the assumption of the independence of irrelevant alternatives (IIA). A

rich empirical field and laboratory literature, starting with Huber et al. (1982), demonstrated

that IIA is frequently and predictably violated (for a review, see Rieskamp et al. (2006)).

It has been demonstrated over and over again, that even when expanding the choice set to
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include clearly dominated alternatives that are never selected, behavior changes consistently

and predictably, for example such as in the famous compromise or decoy effects.

While the violations of IIA defy the foundations of economic theory, they should no longer

be seen as surprising given that our brains encode values of rewards in a context-dependent

fashion (Rangel and Clithero, 2012, Louie et al., 2013, Rustichini et al., 2017, Rigoli et al.,

2016) for normative reasons (Rayo and Becker, 2007, Louie and Glimcher, 2012, Woodford,

2012, Steverson et al., 2019, Robson and Whitehead, 2016). Indeed, as soon as one considers

that our brains have a limited computational power to encode value, the IIA assumption loses

its normative flavor. Intuitively speaking, given that our brains consist of a limited number

of neurons that are biophysically limited in the number of action potentials they can produce

per second in response to reward stimuli (measurement known as the firing rate of neurons),

the subjective value function1 measured in the brain is necessarily bounded. Moreover, the

neural firing rates are well-known to be stochastic. With these two facts in mind, it has been

established that an individual with a bounded random subjective value function will make

more efficient choices if the subjective value function adjusts to the problem at hand. Such

adjustment allows the same individual to discriminate between low-valued rewards such as

a pack of gummy bears and a bar of chocolate when choosing a snack and also between

high-valued rewards such as luxury holidays or a new car. This adjustment to the problem

at hand necessarily introduces dependency of choice on the elements of the choice set.

Recently theorists started to explore how to incorporate such dependencies into choice

models to explain the observed, choice set-dependent patterns of behavior. This has been

done by either allowing the utility function to dependent on all or some of the elements of

the choice set or by adding another process on top of valuation that determines the choice.

For example, in the divisive normalization model (Louie et al., 2013, Landry and Webb,

2018), the value of each alternative is divisively normalized by the sum of values of all the

alternatives in the choice set. In the range normalization models (Kontek and Lewandowski,

2018, Padoa-Schioppa and Rustichini, 2014, Soltani et al., 2012), the utility/value of each

reward is normalized by the range of utilities/values of the alternatives in the choice set.

These two normalization models share a lot of similarities and make the same behavioral

predictions under some circumstances. The key difference between the two approaches is that

in the divisive normalization all of the alternatives in the choice set matter for subjective

value and in the range normalization only the currently evaluated reward, the minimum, and

the maximum rewards in the choice set matter. Finally, in reference-dependent models, such

as the Kőszegi and Rabin (2007) model, each of the alternatives in the choice set can act as

a referent for all other alternatives. An alternative approach to capturing choice set effects

has been to introduce a separate function, such as salience function (Bordalo et al., 2012,

1Neuroeconomists refer to the cardinal measurement of “utility” in the brain as subjective value to
distinguish it from the economic concept of utility.
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Tsetsos et al., 2012), or a separate choice process, such as in the rational attention models

(Caplin et al., 2019, Matêjka and McKay, 2015), that in addition to the utility function

modulate choice. In such models, the addition of seemingly irrelevant alternatives influences

which of the options we attend to or attend to more, increasing the likelihood of choosing

these options. Overall, all of these recent theoretical developments present a significant

improvement over the previous, largely qualitative and verbal, explanations of choice set

effects.

In this paper, our goal is to determine whether a popular model from neuroscience and

neuroeconomics, the divisive normalization model, captures choice set effects in risky choice

that cannot be accounted for by other popular models such as range normalization, salience,

and attraction effect theories. To achieve this goal, we first derived theoretical predictions

on how the addition of another lottery to the choice set affects choice in these four theories.

By doing so, we were able to identify situations where the divisive normalization model

makes different predictions than the other theories. We then tested these predictions in a

controlled laboratory environment where participants selected their preferred 50-50 gamble

with two non-zero rewards from 2-, 3-, and 4-element choice sets. Our paper extends the

previous literature in several ways. Firstly, it introduces a new theory to capture choice

set effects. Secondly, it extends the previous study of choice set effects to risky choice.

Despite an overwhelming number of empirical papers on choice set effects, only a handful

of papers collected evidence on choice set effects in risky choice and under a very specific

set of conditions which we extend. Specifically, ours is the first paper as far as we know to

study choice set effects where the two attributes of an alternative belong to the same, here

monetary, domain. Thirdly, the theoretical literature has predominantly focused on decision-

making under certainty as well. Therefore here, we provide a novel theoretical extension of

divisive normalization and other models to decision-making under risk to study choice set

effects. Finally, we offer both theoretical as well as empirical comparison of leading choice

set effects theories in a risky environment.

The divisive normalization model that we focus on here, originates from a canonical

computation performed by neurons in the sensory systems (Carandini and Heeger, 2012).

This model has been extended to decision-making and has been shown: (1) to be an efficient

mechanism to represent subjective value given the biological costs of value representation

(Steverson et al., 2019), (2) to outperform other models in the description of the neural

firing rates associated with the value of rewards (Louie et al., 2013, Yamada et al., 2018),

(3) to capture Prospect-Theory-like behaviors (reflection effects, loss aversion, probability

weighting, endowment effect) with more flexibility and with less parameters (Glimcher and

Tymula, 2018), and (4) to comprehensively capture choice set effects like no theory has

accomplished previously in decision-making under certainty (Landry and Webb, 2018, Webb

et al., 2019). The essence of the model is that the value of an alternative is divisively
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normalized by the sum of values of all the alternatives in the choice set. This generates the

prediction that the more alternatives there are in the choice set or the larger is the value of

these alternatives, the more compressed (lower) will be the average brain activity representing

a value of each alternative in this choice set, as has been observed empirically by Louie et al.

(2013). The other essential element of the model is the noise term which captures the known

fact that brain activity is largely stochastic. As the number or value of the distracting

alternatives in the choice set increases, the noise term which is not affected by the size of

the choice set becomes more important in driving choice. Therefore, the more distracters

or the higher-valued distracters there are in the choice set, the more likely the individual

is not to select their preferred alternative. Such effects have been observed in choice under

certainty (Louie et al., 2013) but have never been empirically and theoretically explored in

choice under risk and have never been explicitly compared with other theoretical approaches.

A paper closely related to ours. Webb et al. (2019) compared divisive normalization with

multinomial probit and range normalization in decision-making under certainty and found

that the divisive normalization outperforms the other two models.

It is surprising that the vast majority of studies of attraction effects have been carried out

only under conditions of certainty. This cannot be justified by the lack of external validity or

the lack of importance of understanding choice set effects in risky choice —– people struggle

with many important decisions that involve risky rewards chosen from complex choice sets

such as the selection of retirement or insurance plans. One exception in the literature is

the study by Soltani et al. (2012) who studied decoy effects in risky choices. Soltani et al.

(2012) asked their study participants to make binary decisions between two gambles, each

offering a chance to win a positive amount of money or nothing. To induce a decoy effect,

participants were first presented with three gambles (one of them being a decoy), then the

decoy disappeared and the participant chose from a choice set with two alternatives only.

Defining probability and reward as the two attributes of a lottery, Soltani et al. (2012)

find support for range normalization model in their data. We extend their approach by

comparing and testing predictions of divisive normalization, range normalization, salience,

and attraction effect theories. Moreover, we use 50-50 gambles with two non-zero outcomes

and therefore, the lottery payoffs in our study are the lottery attributes, instead of the

probability and reward as in Soltani et al. (2012). We, therefore, establish for the first

time whether choice set effects exist also in the choice between lotteries with two non-zero

outcomes and in doing so identify a setting in which attraction effects do not exist. Our

design of the distracter lotteries is novel as they do not always fall into the “attraction to one

of the alternatives regions”. Neither do they always change the range of possible outcomes

in the choice set. Additionally, we designed our distracters to either change or not change

the salience of the remaining alternatives. This allowed us to test if choice set effects that

are predicted by the divisive normalization model occur also in situations where they cannot
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be explained by range-dependence, salience, or attraction effects. We find that the divisive

normalization model correctly predicts choice set effects that cannot be explained by range

normalization, salience, or attraction effect theories.

Section 2 derives the theoretical predictions of how the addition of irrelevant alternatives

affects choice in: divisive normalization, salience, range normalization, and attraction effect

theories. Section 3 describes the experiment, section 4 describes our empirical strategy, and

section 5 presents the results. The last section concludes.

2 Theory

2.1 Preliminaries

A binary lottery a is defined by three attributes; a = (a1, a2, p
a
1). a1 and a2 are the state 1

and state 2 payoffs of lottery a respectively. pa1 is the associated probability of state 1 being

realised in lottery a. State 2 in lottery a is realised with probability (1− pa1).
Begin with a set A ⊂ R+ × R+ × [0, 1] that consists of all binary lotteries. M is a

collection of subsets of A and each M ∈M is then a set that contains a number of different

binary lotteries. Let nM be the number of lotteries in choice set M .

Definition 1. Define a noiseless utility function u : A → R+ such that u(a,M) is the

noiseless utility a decision-maker receives from lottery a in the choice set M .

Definition 2. Define a random utility function r : A → R+, such that:

1. r(a,M, εa) = u(a,M) + εa

2. εa is i.i.d. and εa ∼ N(0, σ2
ε ) ∀a ∈M

3. Eε[r(a,M, εa)] = u(a,M)

4. εa is independent of the other alternatives in M , and the choice set size nM

r(a,M, εa) is then the random utility signal a decision maker receives from lottery a in the

choice set M .

Individual’s preference is defined over the noiseless utility:

Definition 3. Fix a set T ∈ M and consider a larger set M = {T ∪ Z} ∈ M. Define a

preference function g :M→A such that:

1. g(M) ∈M

2. g(M) = {a ∈M |u(a,M) > u(b,M) ∀b ∈M} that is g rationalises u
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3. If T ⊂M , then g(M) ⊂ T

4. g is one-to-one2

g(M) is thus an individual’s most preferred alternative from the choice set M .

T is then the set of lotteries that contains the individual’s most preferred alternative in

M . We call the lotteries in T “target lotteries”. Z is the set of lotteries that will never be an

individual’s most preferred alternative in M . We call the lotteries in Z “distracter lotteries”.

An individual’s choice function is however distinct from the preference function as it takes

into account the random random element of the utility function.

Definition 4. Define a choice function c :M→A, distinct from g, such that:

1. c(M, ε) ∈M

2. c(M, ε) = {a ∈M |r(a,M, εa) > r(b,M, εb) ∀b ∈M} that is, c rationalises r

3. Eε[c(M, ε)] = g(M), that is, choice reflects preference in expectation

4. c is one-to-one

Put simply, c(M, ε) is the alternative the decision-maker chooses from the choice set M .

Definition 5. A utility-maximising individual satisfies the assumption of independence of

irrelevant alternatives (IIA) if

g(T ) = c(T, ε) = g(M) = c(M, ε) (1)

where εa = 0 ∀a ∈M.

However, behavioural economics has demonstrated that in practice, expanding the choice

set to include particular lotteries in Z can result in this strict equivalence failing, that is

c(T, ε) 6= c(M, ε).

2.2 Additional refinements

We make the following additional assumptions for tractability of the analysis that follows.

All assumptions are satisfied in our laboratory experiments.

Let ms, be the state s payoff in a lottery in M . Let there be two states: s = {1, 2}. For

tractability and without loss of generality, we require that m1 > m2 ≥ 0 ∀m1,m2 ∈ M . All

state payoffs are thus non-negative and state 1 is the upside of every lottery.

T is also refined to consist of two target lotteries: T = {a,b}.
2The assumption that g is one-to-one is used for tractability but could be relaxed and similar results

would hold.
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Definition 6. Define a choice reversal, a situation when:

c(T, ε) 6= c(M, ε) (2)

We distinguish two types of choice reversals: preference-changing choice reversals which

occur when expanding the choice set to M causes a change in the decision-maker’s preference

ordering over T and stochastic choice reversals which occur when individual’s preference

ordering of the target alternatives is the same in T and M , but large realisations of the error

term, ε, can cause observed choice to differ from true preference. Formally,

Definition 7. A preference-changing choice reversal occurs when

g(T ) 6= g(M) =⇒ g(T ) = c(T, ε) 6= c(M, ε) = g(M) (3)

Definition 8. A stochastic choice reversal occurs when

g(T ) = g(M) 6=⇒ c(T, ε) = c(M, ε) (4)

Therefore, a stochastic choice reversal occurs when even though individual’s preference

ordering of the target alternatives remains the same after expanding the choice set, large

realisations of the error term, ε, can cause observed choice to differ from true preference.

2.3 Theories of choice set dependent decision-making

Here we consider theories in which utility depends at least in part on the other alternatives

in the choice set. Although much literature exists to explain choice set effects in riskless

choice, only a limited number of theories capture similar effects in a risky environment. To

the best of our knowledge, this is the first time that a subset of these theories has been

extended to generate explicit choice predictions about risky choice and then compared.

2.3.1 Divisive normalization model

In riskless choice, Louie et al. (2013) proposed that a decision-maker values each option via

a normalized utility function that weights the subjective value of a reward by a discounted

sum of all currently available rewards. This model derives from a canonical model used in

neuroscience to model neural response to stimuli in all sensory systems (see Heeger et al.

(1996), Reynolds and Heeger (2009) for review). Recently, Webb et al. (2019) formalised

the model in a class of random utility models, in which observed choice is a function of
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noiseless utility and a stochastic error term and demonstrated that divisive normalization

better captures the observed data than multinomial probit or range normalization. Steverson

et al. (2019) set out axiomatic foundations for the model, and Glimcher and Tymula (2018)

demonstrated how it relates to risk preferences, loss aversion, probability weighting, and

endowment effect. Empirical tests of the divisive normalization model have shown that it

outperforms other models in predicting brain activity of value-encoding neurons in riskless

(Louie et al., 2013) and risky choice scenarios (Yamada et al., 2018). Here, we present an

extension of the divisive normalization model to theoretically predict and then empirically

test choice set effects in risky choice.

In the divisive normalization model, individual’s noiseless utility from lottery a in the

choice set M is given by:

u(a,M) =
pa1a

α
1 + (1− pa1)aα2∑nM

1

∑2
s=1 p

m
s m

α
s

(5)

where α > 0 is a free parameter discussed in more detail in Glimcher and Tymula (2018).

The actual neural signal that drives choice is random and given by

r(a,M, ε) = u(a,M) + εa (6)

where εa ∼ N(0, σ2) is an i.i.d. error term.

Suppose that g(T ) = a, that is a is the decision-maker’s most preferred alternative out

of the target lotteries. The probability that she is observed to choose a from choice set M

is then:

Pr[c(M, ε) = a|u(a, T ) > u(b, T )] = Pr[r(a|M) > r(b|M)]

= Pr[u(a,M)− u(b,M) > εb − εa]

= F (u(a,M)− u(b,M))

Where f(ε) is the joint density of the error term with associated cumulative distribution

F .

Divisive normalization thus predicts stochastic choice reversals as in Definition 8. In-

tuitively, large realizations of the error term can result in observed choice deviating from

preference. Changing the decision-making context does not change a decision-maker’s most

preferred alternative, but can drive her closer to indifference between the alternatives. As the

individual approaches indifference, the importance of the joint error term (εb− εa) increases,

raising the likelihood of choice reversals. Formally,

Proposition 1. In the divisive normalization model, adding and changing parameters of

distracter lotteries (other things equal) does not change preference.
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Proof. To show: g(T ) = g(M) ∀M = {T ∪ Z} ∈ M
Without loss of generality, assume that g(T ) = a, that is, lottery a is the decision-maker’s

most preferred target lottery:

pa1a
α
1 + (1− pa1)aα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2

>
pb1b

α
1 + (1− pb1)bα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2

(7)

Consider expansion of the choice set to M = {T ∪ Z} where Z is the set of dis-

tracter lotteries (that are never an individual’s most preferred alternative in M). Define

h(nZ , zs, p
z
s) ≡

∑
nZ

∑2
s=1 p

z
sz
α
s as the sum of all expected utilities of all states in all of the

lotteries in Z.

u(a,M) =
pa1a

α
1 + (1− pa1)aα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2 + h(nZ , zs, pzs)

>
pa1a

α
1 + (1− pa1)aα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2 + h(nZ , zs, pzs)

= u(b,M) ∀h(nZ , zs, p
z
s)

Because g rationalises u: g(T ) = g(M) = a. This result holds for any h(nZ , zs, p
z
s) and so

holds for any set of distracters Z in the choice set M = {T ∪ Z} ∈ M �

Proposition 2. In the divisive normalization model, adding an additional distracter lottery

in the choice set increases the likelihood of choice reversals.

Proof. To show:
∂Pr[c(M, ε) = a|u(a, T ) > u(b, T )]

∂nZ
< 0 (8)

Without loss of generality, assume that g(T ) = a, that is lottery a is the decision-maker’s

most preferred target lottery. Consider expansion of the choice set to M = {T ∪ Z} where

Z is the set of distracter lotteries (that are never an individual’s most preferred alternative

in M).

Define γ as:

γ ≡ u(a,M)− u(b,M) =
pa1a

α
1 + (1− pa1)aα2 − pb1bα1 − (1− pb1)bα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2 +

∑
nZ

∑2
s=1 p

z
sz
α
s

(9)

The probability that a decision-maker chooses a from M is F (γ). Continuing the notation

from the proof of Proposition 1, h(nZ , zs, p
z
s) ≡

∑
nZ

∑2
s=1 p

z
sz
α
s is the sum of all expected

utilities of all states in all of the lotteries in Z. It is straightforward that ∂h
∂nZ
≥ 0, ∂h

∂zs
≥ 0,

and ∂h
∂pzs
≥ 0. Using these observations, we get that

∂γ

∂nZ
= − ∂h

∂nZ
× γ∑

nM

∑2
s=1 p

m
s m

α
s

≤ 0 (10)

which completes the proof. �
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Proposition 3. In the divisive normalization model, increasing the distracter lottery payoffs

increases the likelihood of choice reversals.

Proof. To show:
∂Pr[c(M, ε) = a|u(a, T ) > u(b, T )]

∂zs
< 0 (11)

Using the notation from the proof of Proposition 1 and differentiating equation 9 with

respect to an arbitrary zs, we get:

∂γ

∂zS
= −αpzszα−1s × γ∑

nM

∑2
s=1 p

m
s m

α
s

≤ 0 (12)

which completes the proof. �

Finally, when writing this paper we encountered ambiguity in how the probabilities of

lottery outcomes should be incorporated in the divisive normalization model. We settled on

the functional form presented in equation 5, but it has not yet been tested whether only

lottery payoffs or also their probabilities should enter in the denominator. While this is not

the main objective of our paper, we will conduct exploratory analysis to test the following

proposition:

Proposition 4. If the correct functional form for normalization is as in equation 5, in-

creasing the state 1 probability in a distracter lottery will increase the likelihood of choice

reversals.

Proof. Begin by assuming, without loss of generality, that lottery a is decision-maker’s most

preferred target lottery; g(T ) = a. Consider expansion of the choice set to M = {a,b,d}
where d ∈ Z.

Assume that equation 5 is the correct functional form for noiseless utility and define Φ

such that:

Φ ≡ u(a,M)− u(b,M) =
(pa1a

α
1 + (1− pa1)aα2 − pb1bα1 − (1− pb1)bα2

pa1a
α
1 + (1− pa1)aα2 + pb1b

α
1 + (1− pb1)bα2 + pd1d

α
1 + (1− pd1)dα2

(13)

In my environment the upside of every lottery occurs in state 1, so differentiating Φ with

respect to pd1:
∂Φ

∂pd1
= −(dα1 − dα2 )

Φ

ΣnM
Σ2
s=1p

m
s m

α
s

≤ 0

And then substituting, we get:

∂Pr[c(M, ε) = a|u(a, T ) > u(b, T )]

∂pd1
≤ 0

which completes the proof. �
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Importantly Propositions 2 and 3 do not depend on whether the probabilities of outcomes

enter the denominator or not.

Our goal is to test whether the above predictions of normalization hold and can explain

behavior better and beyond existing models of choice. For this purpose, we briefly summarize

and contrast other existing models with divisive normalization in the following sections.

2.3.2 Salience

Bordalo et al. (2012) salience theory rests on the assumption that individuals overweight

states with the largest absolute difference in payoffs. A decision-maker with salience pref-

erences values each lottery via a two-stage process. In the first stage, a decision-maker

calculates the relative salience of each of the states. The salience of state s = {1, 2} in

lottery a in choice set M is given by the salience function:

σa|M
s = σ(as, h(ms,−a)) =

|as − h(ms,−a)|
|as|+ |h(ms,−a)|

(14)

where h(ms,−a) = 1
nM−1

∑nM

j 6=a js is the average of all state s payoffs in {M\a}.
In the second-stage, the expected utility of the state with the lowest σ is underweighted

by a parameter δ ∈ [0, 1].3 For example, if state 2 is the most salient state in lottery a (that

is σ
a|M
2 > σ

a|M
1 ), then salience theory predicts that a decision maker values lottery a as:

u(a,M) = δpa1v(a1) + (1− pa1)v(a2) (15)

where v(as) is the individual’s utility from the state s payoff in lottery a.

Salience assumes that individuals observe the noiseless utility of each alternative, rather

than utility signals. As such, salience theory demands equivalence of choice and preference:

c(M) = g(M).

Expanding the choice set from T to M can change the salience ordering of the states

within one or more of the target lotteries (a situation that we call “salience reversal” in what

follows). If a salience reversal occurs, the utility of the lottery changes, which may in turn

change which of the lotteries is the decision-maker’s most preferred alternative. This may

lead to a preference-changing choice reversal.

We now formally derive propositions that establish when preference and choice reversals

occur for an individual with salience preferences. For tractability, we assume that the utility

function is CRRA utility function, given by v(x) = xr.

Proposition 5. A salience reversal in a target lottery is necessary but not sufficient condition

for a choice reversal.

3Preliminary experimental evidence by Bordalo et al. (2012) estimates δ to be approximately 0.7.
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Proof. Begin by assuming, without loss of generality, that lottery a is decision-maker’s most

preferred target lottery: g(T ) = a. Consider expansion of the choice set to M = {T ∪ Z}
where Z is the set of distracter lotteries that can never be an individual’s most preferred

alternative in M .

Proposition 5 follows naturally by observing that in equation 15, it is only the location of

δ that can be affected by the decision-making context. An individual’s utility of each lottery

will only change if the location of δ changes. Further, the location of δ in each lottery is

determined by the least salient state in that lottery. Thus, if expanding the choice set from

T to M does not change which state is the least salient in both lotteries a and b, then:

u(a, T ) = u(a,M) > u(b, T ) = u(b,M) (16)

As preferences have not changed, choice will not change. Therefore, salience reversal is

necessary for the choice reversal to occur.

Insufficiency of salience reversal to always cause choice reversal occurs because the fol-

lowing two conditions do not always hold at the same time:

1. δpa1v(a1) + (1− pa1)v(a2) > δpb1v(b1) + (1− pb1)v(b2)

2. pa1v(a1) + δ(1− pa1)v(a2) < δpb1v(b1) + (1− pb1)v(b2)

�

It turns out that there is a set of conditions under which salience and divisive normaliza-

tion make the same behavioural predictions about choice reversals as the choice set expands

to include distracter alternatives. To evaluate if divisive normalization has any additional

explanatory power over salience we instead focus on two examples of situations in which

salience makes behavioural predictions that are different from divisive normalization.

As the first example, consider three different choice sets; {a,b}, {a,b,d}, and {a,b,d, e}
where a,b ∈ T and d, e ∈ Z. If expanding the choice set from T to include lotteries d and/or

e does not cause a salience reversal in one of the target lotteries, salience theory predicts

that no choice reversals will occur in any of the choice sets (Proposition 5). Conversely, since

expanding the choice set to include lotteries d and e has increased the number of alternatives

in the choice set, normalization predicts a higher likelihood of choice reversals.

As the second example, we will consider how increasing payoffs of the distracter lotteries

affects the propensity of choice reversals. Divisive normalization predicts that the likelihood

of choice reversals monotonically weakly increases as the expected value of the distracters

increases (Proposition 3). To the contrary, there exists a set of conditions under which

salience makes the opposite prediction.
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Proposition 6. Let T = {a,b}, d ∈ Z ,M = {a,b,d} and g(T ) = a. Increasing the

expected value of the distracter lottery decreases the likelihood of a choice reversal, when the

following conditions hold:

δ
a|T
2 > δ

a|T
1

δ
b|T
2 > δ

b|T
1

b1 > a1 > d1 > 0

a2 > b2 > d2 > 0

a1 <
b1+d1

2

b2 <
a2+d2

2

pa1 = pb1 = pd1

Proof. Assume that the restrictions from Proposition 6 are satisfied. First, we establish how

salience changes for each state of the target lotteries, after the choice set expands from T to

M.

The salience of state 1 in lottery a in the choice set M to decrease relative to its salience

in T :

σ
a|M
1 − σa|T

1 =
|a1 − b1+d1

2
|

a1 + b1+d1
2

− a1 − b1
a1 + b1

< 0 (17)

Using parallel calculations, we get that:

σ
a|M
2 > σ

a|T
2

σ
b|M
1 > σ

b|T
1

σ
b|M
2 < σ

b|T
2

Let ϕ ≡ σ
b|M
1 − σb|M

2 . The sign of ϕ may be either positive or negative. If ϕ > 0, then

the expansion of the choice set from T to M has caused state 1 to become the most salient

state in lottery b. In this case a salience reversal has occurred in lottery b, as by assumption

in Proposition 6 state 2 was the most salient state in lottery b in T .

Next, we establish that the higher are the payoffs of the distracter, the less likely it is

that salience reversal occurs, and what follows, the less likely it is that choice reversal occurs.

Formally, we need to show that ∂ϕ
∂ds

< 0 ∀s.
Since

∂σ
b|M
1

∂d1
= −4b1

(d1+a1+2b1)2
< 0

∂σ
b|M
1

∂d2
= 0

∂σ
b|M
2

∂d1
= 0

∂σ
b|M
2

∂d2
= 4b2

(d2+a2+2b2)2
> 0
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We conclude that ∂ϕ
∂ds

< 0 so for higher values of ds, ϕ > 0 is less likely satisfied which

completes the proof. �

In our experiment, we constructed distracter lotteries in a way that allowed us to directly

test these two divergent predictions. These are not the only possible scenarios where nor-

malization and salience diverge, but because they capture the intuition of the two models

and because participants’ time in the lab is limited, we restricted our attention to these two

scenarios.

2.3.3 Range normalization models

The general idea behind the range normalization models is that utility of an outcome is

assessed relative to the range of possible rewards. The conceptual difference between divisive

and range normalization is that in the first one all alternatives in the choice set contribute

to the valuation of a reward, while in the latter only minimum and maximum of the reward

range matter. A variety of formalizations of the range-normalized utility of lottery a in the

choice set M have been used (for example Kivetz et al. (2004), Kontek and Lewandowski

(2018)). These range models can capture choice reversals only if including distracter lotteries

alters the maximum and minimum attributes in the choice set. Formally,

Proposition 7. If adding an additional distracter lottery does not alter the maximum and

minimum attributes in the choice set, then there is no change in the likelihood of choice

reversals.

Proof. This is easily proved by observing that in range normalization models a decision-

maker’s utility of an alternative depends on the decision-making context only insofar as it

depends on the mininum and maximum attributes in each choice set. �

To the contrary, as established in Proposition 2, divisive normalization claims that even

when the range of rewards is not altered, addition of alternatives can lead to an increase of

choice reversals.

2.3.4 Attraction effects

Attraction effect theories posit that the addition of irrelevant distracter lotteries can induce

choice reversals. Specifically, if choice set {a,b} is expanded to include another lottery d

that is dominated on all attributes by a but not by b, more people will chose a if d is offered.

Ok et al. (2015) formulated a more stringent version of the logic above. Their theory pre-

dicts that individuals will reverse their choice if the choice set contains a referent alternative

that is dominated on all attributes by another option in the choice set.

Whether an alternative is a reference alternative is endogenously determined. A reference

alternative is one that is never chosen, but inclusion of which in a larger choice set causes
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the decision-maker to reverse the choice she was observed to make from the smaller set. A

revealed reference alternative may be illustrated by the following example. Consider two

choice sets X = {x,y} and Y = {x,y, z}. Suppose that lottery z is never chosen from Y

because it is first-order stochastically dominated by another lottery in Y . Suppose further

that the following choices by a decision-maker are observed: c(X) 6= c(Y ) Then lottery z is

then a revealed reference alternative in Y for this decision-maker.

Applying Ok et al. (2015) theory in our environment yields the following proposition:

Proposition 8. When the following conditions hold:

T = {a,b},d ∈ Z,M = {a,b,d}
c(T ) 6= c(M) b1 > a1 > d1 > 0 a2 > d2 > b2 > 0 pb ≥ pa ≥ pd

Decision-maker will choose lottery a from M .

Proof. To show: d and b will not be chosen from M .

To understand that d will not be chosen from M , firstly, observe that one of the alterna-

tives in M must be a reference alternative because the choice observed in T is not the same

choice that is observed in M (c(T ) 6= c(M)). d ∈ Z so lottery d can never be ranked at the

top of any decision-maker’s preference ordering of the alternatives in M and therefore can

never be chosen from M . Lottery d must then be the reference alternative in M .

b will not be chosen from M because decision-makers will only choose those alternatives

in M that dominate lottery d on every attribute. d2 > b2, so lottery b does not dominate

lottery d on every attribute. Thus, it cannot be chosen from M .

Lottery a dominates d on every attribute and therefore decision-makers will thus choose

lottery from M . �

Summarizing, Ok et al. (2015) predicts that when choice sets contain a reference alterna-

tive, the decision-maker will choose the alternative that dominates the reference alternative

on every attribute.

Given that attraction effect theories already predict that addition of a lottery may alter

preference, we first of all perform some of our hypotheses testing in scenarios that are not

compatible with these theories because the additional alternatives are not in the attraction

region. Second, we explicitly perform tests of attraction effects. Here we provide novel

evidence that attraction effects do not occur for choices over 50-50 binary lotteries.

3 Experimental design

3.1 Task

To investigate how adding or changing seemingly irrelevant elements of the choice set can

cause choice reversals, participants were asked to choose in 84 unique choice scenarios that
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varied the size of choice sets and lottery payoffs. The choice sets contained either two, three

or four different lotteries to choose from. Figure 1 presents screenshots from the experiment

illustrating examples of choice scenarios for different choice set sizes.
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Figure 1: Examples of different choice scenarios that participants chose from

Participants chose their most preferred lottery by pressing the button below it and were

not allowed to skip questions. Each of the 84 choice scenarios was repeated once, for a total

of 168 choices in the actual task. The order of the 168 choices was randomised. The layouts

of the lotteries were also randomised for each participant, so that the target and distracter

lotteries were not always located in the same position on the screen.

3.2 Payment

At the conclusion of the experiment, the Z-tree software randomly selected one of the par-

ticipant’s chosen lotteries for payment. This random selection was performed independently

for each participant. Participants then manually played out the selected lottery. The ex-

perimenter presented each participant with a bag containing one hundred numbered chips,

each labelled from 1 to 100. Without looking, participants chose a chip from this bag. The

probability displayed in the upper blue box of the chosen lottery corresponded to the range

of numbers a participant had to draw in order to receive the amount displayed in the blue

box. For example, suppose that a 50-50 lottery paying either $11 or $8 (illustrated on the

very left in Figure 1A) was selected for payment. If a participant drew a number between

1 and 50 inclusive, they would receive $11. If they drew a number between, 51 and 100,
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they would receive $8. Additionally, each participant received a $10 show up fee, regardless

of their decisions in the experiment. All payments were made in private and in cash at the

conclusion of each experimental session.

3.3 Choice set design

We designed 84 unique choice sets to allow us to test normalization model against other

theories of choice set effects when their predictions differ. As a first step, we designed twelve

pairs of binary target lotteries, labelled a and b. We then designed different binary distracter

lotteries, d and e, to go with each target lottery pair. Consistent with the notation of section

2, a,b ∈ T (target lotteries) and d, e ∈ Z (distracter lotteries). Consequently, for the choice

set M = {a,b,d, e}, either lottery a or b will be the individual’s most preferred alternative

in M . Lotteries d and e are designed such that they will never be an individual’s most

preferred alternative in M .

3.3.1 Target lotteries

The possibility of observing a choice reversal, and thus the ability to test the propositions

developed in section 2, increases when the decision-maker is close to indifference between

the target lotteries. Intuitively, if one target lottery is obviously better than the other, then

changing the number and value of the distracter lotteries in the choice set is unlikely to have

any meaningful effect on the individual’s preference ordering over T under any of the theories.

We therefore designed a set of twelve target lottery pairs in such a way that the majority

of choosers should be close to indifference for at least some of them. Since the population-

level measurements of risk preference in salience and normalization models are not widely

available, as a guide we used widely available CRRA (U(x) = xr) estimates. After pilot

pretesting, we set on a range of r ∈ [0.1, 0.65], as our participant pool displayed indifference

within this parameter range. Probabilities of every state were 50-50 for simplicity.

The two sets of target lotteries are listed in Table 1. Each set will serve slightly different

purposes in our analysis, as will become clear later.

Note that for the predictions of salience model to hold, the states in target and distracter

lotteries must be positively correlated. To achieve this, the upside of the lottery was always

located in the blue box (see Figure 1). Since the probability of winning the upside payoffs is

50 per cent in every lottery, this means that drawing a number between 1 and 50 (between

51 and 100), triggers the realisation of state 1 (2) for every lottery in the choice set. This

ensures positive correlation between every state.
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Table 1: Binary target lottery pairs. CRRA r is the r that would make individual indifferent
between two lotteries (assuming u(x) = xr), a1 and a2 are lottery a payoffs and pa1 is the
probability of receiving a1. b1 and b2 are lottery b payoffs and pb1 is the probability of
receiving b1.

Set Target pair CRRA r a1 a2 pa1 b1 b2 pb1
1 1 0.15 10 9 0.5 49 1 0.5
1 2 0.25 10 9 0.5 39 1 0.5
1 3 0.35 10 9 0.5 32 1 0.5
1 4 0.45 11 8 0.5 23 2 0.5
1 5 0.55 11 8 0.5 21 2 0.5
1 6 0.65 11 8 0.5 20 2 0.5
2 7 0.1 14 11 0.5 30 5 0.5
2 8 0.2 14 11 0.5 28 5 0.5
2 9 0.3 14 11 0.5 26 5 0.5
2 10 0.4 13 10 0.5 24 4 0.5
2 11 0.5 12 10 0.5 22 4 0.5
2 12 0.6 11 10 0.5 19 4 0.5

3.3.2 Distracter lotteries

For each of the target lottery pairs, we constructed different distracter lotteries d and e.

These distracter lotteries were constructed such that they will never be an individual’s most

preferred alternative in the choice setM = {a,b,d, e}. Distracter lotteries are thus implicitly

defined relative to each a, b pair. As such, each distracter lottery is only a distracter for a

particular target lottery pair.

Figure 2 depicts the relationship between distracter and target lotteries payoffs. The

payoffs of the distracters for the target lotteries in the first set were located in the green and

white-green regions in Figure 2. They are therefore first-order stochastically dominated by

one or both of the target lotteries. The payoffs of the distracters for the target lotteries in the

second set were located in the blue region. Although, they are not first-order stochastically

dominated by the target lotteries, they should be less attractive to the choosers than at least

one of the target lotteries (we explain later how we guaranteed this).

Distracters for the first set of target lotteries.

Distracter lotteries in the first set of target lotteries were designed to compare salience and

divisive normalization. They are always first-order stochastically dominated by one or two

target lotteries (Figure 2) and thus satisfy the requirement to be distracters because they

can never be ranked as an individual’s most preferred alternative. Note however, that they

change the range of rewards relative to M = {a,b} and dattract and eNR are in the attraction

to a region.

Appendix D lists all of the lotteries in this set. Figure 2 provides an illustration of
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Figure 2: Location of distracter lotteries. First set distracter lotteries are located in the
green and white-green areas. Second set distracter lotteries are located in the blue area.

the location of the distracter and target lotteries in this first set. Only dSRmed and dSRlow are

salience-reversing distracters and dNR, dSRmed and dSRlow were chosen specifically to contrast

salience and normalization (E[dNR] > E[dSRmed] > E[dSRlow] for all cases). dattract and eNR

lie in the attraction to a white-green region and allow us to check for the attraction effect.

All of the distracters except dprob are 50-50 lotteries. dprob has the same state payoffs as

dNR but only 30 per cent chance of state 1 occurring, allowing us to test whether changes

in probability of the distracter payoffs affect choice. Table 2 lists all of choice scenarios

that were constructed from the lotteries in set one. Note that in one of the pair of target

lotteries (Target Pair 1), the eNR distracter is outside the white-green region and so not

weakly dominated by any of the target lotteries. This is to ensure that this distracter is

not salience-reversing. Importantly, only 2 out of 7 choice set types in set 1 reverse salience

rankings and therefore salience would predict that preference reverselas could occur. In the

other 5 choice set types, according to salience, participants should be consistently choosing

the same, generally preferred lottery.
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Table 2: First set of distracters

Case name Choice Set Additional Information

Target {a,b} • State 2 is the most salient state in both lot-
teries

Salience-reversing low {a,b,dSRlow}
• State 1 is the most salient state in lottery b
• State 2 is the most salient state in lottery a

Salience-reversing med {a,b,dSRmed}

• State 1 is the most salient state in lottery b
• State 2 is the most salient state in lottery a
• In target pair 3, we were unable to construct a

lottery with d2 > 0 that resulted in a salience
reversal

Non-reversing trinary {a,b,dNR} • State 2 is the most salient state in both lot-
teries

Trinary probability {a,b,dprob} • dprob has the same state payoffs as dNR, but
only a 30% chance of state 1 occurring

Trinary attraction {a,b,dattract} • a2 > d2 > b2

Non-reversing quad {a,b,dNR, eNR} • State 2 is the most salient state in both lot-
teries

Distracters for the second set of target lotteries

The distracters in the second set of target lotteries do not change the range of the rewards

and are placed away from the attraction regions, see the blue colored area in Figure 2 are

not first-order stochastically dominated by target lotteries. These distracter lotteries were

designed to satisfy two criteria:

1. They are never ranked as the top alternative for any decision maker with a reasonable

risk preference (reasonable being defined using CRRA utility specification as r > 0 in

U(x) = xr), and

2. They are not first order stochastically dominated by any of the other alternatives in

the choice set

In the second set of target lotteries particularly risk-averse or risk-loving individuals may

rank distracter lottery d as second but they will never rank it as first.
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Figure 2 provides an illustration of the location of the distracters in the second set of

target lotteries and Appendix D contains the full set of lotteries in this second set. Table

3 lists all of the scenario cases that were constructed from the second set of target and

distracter lotteries.

Table 3: Second set of distracters

Case Choice Set Additional Information

Target {a,b}

Trinary {a,b,d}

(a/d) {a,d}

(b/d) {b,d}

Trinary low {ai,bi,dlow}

Trinary probability {a,b,dprob}
• dprob represents a lottery with the same state

payoffs as d, but only a 20% chance of the
upside occurring

Quad {a,b,d, e}

• e has lower expected value than d, but is not
first order stochastically dominated by d (
b1 > d1 > e1 > a1 and a2 > e2 > d2 > b2)

3.3.3 Other details

Each of the 84 unique choice scenarios was presented twice, for a total of 168 choice sce-

narios faced by every participant. Repetition of every choice scenario facilitated inferring a

participant’s most preferred target lottery and was necessary to infer choice reversals.

121 participants (55 male, mean age 23.17 with standard deviation 4.25) were recruited

using ORSEE (Greiner, 2004) from the participant pool at the University of Sydney. Data

was collected in 6 sessions run in September 2018 and May 2019 using z-Tree software. Ses-

sions lasted approximately 60 minutes and were conducted in the behavioural laboratory at

the University of Sydney. The study was approved by the Human Research Ethics Commit-

tee at the University of Sydney. The instructions (provided in Appendix B) were presented

on computer screens and read aloud to participants by the experimenter. To ensure partici-

pants understood the task, they completed eight true/false comprehension questions before
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the beginning of the real task. Following the completion of all 168 choice scenarios, par-

ticipants filled in a questionnaire requesting information such as age, gender, educational

attainment and wealth (full questionnaire is available in Appendix C). The experiment

concluded with payment.

4 Empirical strategy

Our main variable of interest is whether a choice reversal occured or not. All of the theories

that we consider assume that choice will reflect preference in expectation. To allow for

a comprehensive analysis of the effect of distracters on risky choice, for each of the 12

target lottery pairs {a,b}, we predict each participant’s most preferred target lottery to

be the lottery they “generally” prefer. Specifically, this generally preferred target lottery is

identified as the lottery that they choose over 50% of the time. With this procedure we can

infer preference for one of the target lotteries for 96% of the ’participant-target lotteries’

pairs.

This identification strategy allows participant to occasionally deviate from her preference,

however on average, her decisions should reflect her underlying preference. The advantage

of our preference identification method is that it allows the possibility that a decision maker

made a choice reversal in both binary trials.

A new binary variable that identifies choice reversals on each trial, separately for each

individual, is then defined as:

choice reversal = 1 if observed choice 6= preferred choice

= 0 if observed choice = preferred choice

A small fraction of cases for which we could not identify preference for either of the target

lotteries are excluded from the analysis. Unless stated otherwise, all models are estimated

using fixed effects. OLS with standard errors clustered on an individual level and p-values

are from two-sided tests. Although our dependent variable is binary [0,1], we prefer to use

fixed effects OLS over a conditional fixed effects logit model because the latter excludes the

participants who did not make any choice reversals, creating a severe upward bias in logistic

estimates due to sample selection. This is further problematic because different participants,

and different numbers of participants are perfect choosers (that is have no choice reversals)

in different estimations. As such, not only would a conditional fixed effects logistic model be

biased, but any conclusions could not be compared across specifications due to inconsistency

in the sample composition. We therefore use fixed effects OLS and the coefficients can be

interpreted as the predicted change in the probability of observing a choice reversal.
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5 Results

5.1 Preliminary results

We checked that the distracter lotteries were indeed distracters that were not chosen by

our participants when both of the distracter lotteries were offered. Figure 3 illustrates the

proportion of times each lottery was chosen by participants when it was available in the

choice set that included both target lotteries a and b. The distracter lotteries are clearly

distracters as they were very rarely chosen by participants in our experiment. Overall, in 98%

of trials (99% in set 1 and 96% in set 2), participants selected one of the target lotteries.

Distracters were slightly more often selected in set 2 than in set 1, which is expected by

design, as the distracters in set 2 were not first-order stochastically dominated by one of the

target lotteries.4

Choice reversals occurred in 10.85% of the decisions made by participants. As such,

even though the distracter lotteries are never an individual’s most preferred alternative,

their addition into the choice set still affected participant’s decisions. More choice reversals

were observed in set 2 than in set 1 (13.73% versus 8.85%, p < 0.001). This is expected

under divisive normalization model, but not under salience, range normalization or attraction

effects, as the distracter lotteries in the first (second) set were always (never) first-order

stochastically dominated by target lotteries and thus of lower value.

Participants’ choices reveal that they were seeking to maximise their remuneration —

when choosing between target lotteries in binary target cases they were more likely to choose

lottery a, when the expected payoff of lottery b decreased (Table 4).5

Table 4: Chose a is a binary dependent variable equal to 1 if participant chose lottery
a. All data from binary choice sets included. Standard errors are clustered on individual.
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

dep var Chose a
Expected Value of Lottery b –0.027∗∗∗

(0.003)
Expected value of Lottery a –0.005

(0.008)
Constant 0.977∗∗∗

(0.099)
No. of observations 2,904

4In Set 2, participants were also asked to choose from the {a,d} and {b,d} choice sets, however we do
not include the decisions made in these choice sets in our analysis or results.

5Note that each of the 12 target pairs was constructed by holding the payoffs in lottery a constant.
Insufficient variation in lottery a resulted in insignificant coefficient on its expected value in this analysis.
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Figure 3: Proportion of times each lottery type was selected when offered

5.2 Main hypotheses and results

We now test each of the main hypotheses in turn.

Hypothesis 1. Changing parameters of the distracter lotteries (other things equal) does not

change risk attitudes.

Normalization predicts that even though choices may stochastically reverse due to the

error term guiding choice, the preference over two risky alternatives as defined by the noiseless

utility does not change (Proposition 1). Consistent with this prediction, Figure 4 illustrates

that the proportion of times lottery a (the safer lottery of {a,b}) was selected did not change

as the various distracters were added to the choice set. ANOVA analysis finds no significant

difference in the proportions of safer lottery choices across the choice sets (p = 0.782 for Set 1,

p = 0.052 for Set 2). Given that the result is close to sifnificant in Set 2, we conducted further

tests and found that neither the Bonferroni, Scheffe nor Sidak methods find any significant

differences between the choice sets. As an an individual’s most preferred alternative must

be one of the target lotteries, only trials where a subject chose either lottery a or lottery b

are included in this analysis.

Hypothesis 2. Including an additional distracter lottery in the choice set leads to more

choice reversals.

Normalization predicts a higher likelihood of choice reversals when an additional dis-

tracter lottery is added to the choice set (Proposition 2). To test this hypothesis, we
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Figure 4: Proportion of safer target lottery choices in different choice set

used participants choices in the following cases: binary target {a,b}, non-reversing tri-

nary {a,b,dNR}, non-reversing quad {a,b,dNR, eNR}, trinary low {a,b,dlow}, and quad

{a,b,d, e}. Regression analysis revealed that the probability to make a choice reversal in-

creased in the number of lotteries in the choice set (see Table 5 model (1)) and the expected

value of the distracter lotteries (see Table 5 model (2)). Next we focus on each of the sets

one at a time to argue that this effect cannot be attributed to salience, range-normalization,

or attraction effects.

Normalization prediction that the likelihood of choice reversals weakly increases in the

number of distracters is illustrated as the solid blue line in Figure 5(a). Salience can generate

the same prediction under certain circumstances. However, if the inclusion of distracter

lotteries does not change the most salient state in both target lotteries, salience predicts no

choice reversals will occur (a prediction illustrated by the dashed red line in Figure 5(a)). We

constructed a subset of choice sets in the first set of lotteries to specifically test and contrast

these predictions: salience rankings remain the same in binary target {a,b}, non-reversing

trinary {a,b,dNR}, and non-reversing quad {a,b,dNR, eNR}. The first set of lotteries thus

serves as a test whether there are more choice reversals as the number of distracters increases

even when they cannot be explained by salience. Figure 5(b) illustrates the result. There

is a clear pattern of increased choice reversals as these distracters are added to the choice

set. This pattern holds for the majority of target lottery pairs (Figure 5(c)). Regressing

choice reversal on the number of lotteries in the choice set (controlling for the difference in

expected value of the target lotteries) confirmed the statistical significance of this result (see

Table 5 model (3)). We thus conclude that choice reversals occur even when they cannot be

explained by salience reversals.

In these specific cases in set 1, the non-reversing trinary distracter lottery dNR is domi-

nated by both of the target lotteries. Thus, by design any increase in choice reversals when

this distracter is added cannot be explained by attraction effects. Moreover, the range of
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Table 5: Effect of adding a distracter on the likelihood of choice reversals. Dependent
variable choice reversal is equal to 1 if choice reversal occurred and 0 otherwise. No. of
alternatives is equal to the number of alternatives in the choice set. E[d]+E[e] is the sum of
the expected values of distractors. Models (1) and (2) are estimated over all binary target,
non-reversing trinary and non-reversing quad cases in the first set of target lotteries. Models
(3) and (4) are estimated over all binary target, trinary target and quad cases in the second
set of lotteries. +p < 0.1,∗ p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

(1) (2) (3) (4) (5) (6)
No of alternatives 0.019∗∗∗ 0.015∗∗ 0.024∗∗

(0.005) (0.006) (0.008)
E[d] + E[e] 0.003∗∗∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001)
|E[a]− E[b]| –0.002 –0.001 0.002 0.002 0.000 –0.001

(0.001) (0.001) (0.001) (0.001) (0.005) (0.005)
constant 0.069∗∗∗ 0.096∗∗∗ 0.032 0.064∗∗∗ 0.077∗ 0.127∗∗∗

(0.017) (0.009) (0.020) (0.010) (0.030) (0.017)
R2 0.003 0.007 0.003 0.003 0.003 0.003
No. of obs 8382 8382 4248 4248 4134 4134

rewards is always the same in the non-reversing trinary case {a,b,dNR}, and non-reversing

quad case {a,b,dNR, eNR}, meaning that the increase in choice reversals between these two

cases cannot be explained by range normalization. Therefore, we conclude that in set 1 we

see choice reversals that are predicted by divisive normalization even though they could not

be driven by changes in salience, range-normalization, and attraction effects.

In the non-reversing quad case in the first set of target lotteries, the additional distracter

lottery eNR was constructed such that it is never the most preferred alternative and does

not generate salience reversals in target lotteries. This resulted in this lottery being in the

attraction to a region which could confound our results. Moreover, the non-reversing trinary

distracter dNR changes the range of rewards in the choice set. Therefore, to further verify

whether choice reversals increase in the number of distracters as predicted by normalization

even if the range of rewards stays constant and no distracters are introduced in the attraction

area, we next investigate the second set of target lotteries where the distracters do not change

the range of rewards and are never in the attraction to target lotteries region. Consistent

with the results in the first set of lotteries, we find that choice reversals increase in the

number of distracters (Table 5 model (5)) and their value (Table 5 model (6)) as illustrated

in Figure 5(d) and Figure 5(e).

Overall, we conclude that divisive normalization can capture the observed increase in

choice reversals as a function of the number of distracters in the choice set that neither

salience, attraction effects, nor range-normalization can account for.
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Figure 5: Predicted and observed proportion of observed choice reversals in choice sets with
two, three and four alternatives. In (a) the blue solid line is the divisive normalisation
prediction and the dashed red line is salience prediction in set 1.

Hypothesis 3. Increasing the expected value of a distracter lottery leads to an increase in

choice reversals.

The analysis presented in Table 5 in models (2), (4), and (6) hints that as the value of

distracters increases, people make more choice reversals. To make sure that our interpretation

of the result is not confounded by the effect of the size of the choice set, we now focus only on

the cases with one distracter and check whether its value has an impact on the frequency of

choice reversals. Using all decisions made in choice sets with three lotteries, we find that our

participants were more likely to make a reversal as the expected value of the distracter lottery

increased by (Table 6 model (1)). We now focus on set 1 and set 2 separately to understand

whether this result could be explained by salience, range normalization, or attraction effects

instead of divisive normalization.

Divisive normalization predicts more choice reversals for higher values of the distracter

lottery. Conversely, when the conditions specified in Proposition 6 hold, salience predicts

less choice reversals for higher values of the distracter lottery. These two contradictory

predictions are illustrated in Figure 6(a). The distracters in the first set were designed for

these predictions to be directly tested.

A salience reversal occurs in lottery b when the choice set is expanded from the bi-

nary target case to include salience-reversing low dSRlow and salience-reversing medium dSRmed
distracter lotteries. As E[dSRmed] > E[dSRlow], salience predicts a greater likelihood of choice re-

versals with dSRlow distracter than with dSRmed distracter. The combination of these predictions
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Table 6: Effect of increasing distracter value on the likelihood of choice reversals. Dependent
variable choice reversal is equal to 1 if choice reversal occurred and 0 otherwise. E[d]
is the expected value of lottery d. All models include participant fixed effects and have
standard errors clustered on participant. Model (1) is estimated for all trinary cases in the
experiment. Model (2) is estimated over all salience-reversing low, salience-reversing med
and non-reversing trinary cases in the first set of lotteries. Model (3) is estimated over all
salience-reversing low, salience-reversing med, non-reversing trinary, and trinary attraction
cases in the first set of lotteries. Model (4) is estimated over all trinary and trinary low cases
in the second set of target lotteries. +p < 0.1 , ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

(1) (2) (3) (4)
E[d] 0.005∗∗ 0.001 0.003+ 0.016∗∗

(0.002) (0.003) (0.002) (0.006)
|E[a]− E[b]| 0.000 0.001 0.000 –0.012∗

(0.001) (0.001) (0.001) (0.006)
set 0.052∗

(0.021)
constant –0.038 0.073∗∗∗ 0.072∗∗∗ –0.016

(0.043) (0.011) (0.010) (0.057)
R2 0.001 –0.000 0.000 0.003
No. of obs 8568 4248 5664 2756

results in the decreasing proportion of choice reversals under salience presented in Figure

6(a). Moreover, all of the distracter lotteries used in this analysis of the first set of lotter-

ies are first-order stochastically dominated by both of the target lotteries, therefore simple

attraction effect theories alone cannot explain any observed choice reversals in this dataset.

Figures 6(b) and 6(c) illustrate the proportion of times choice reversals were observed as

the expected value of the distracter increased in set 1. Figure 6(b) pools all choices together

while Figure 6(c) breaks down the choice data by each pair of target lotteries. Model (2) in

Table 6 analyses choice reversals as a function of the expected value of distracters dSRlow, dSRmed
and dNR. Overall, choice reversals did not increase as the expected value of these specific

distracters increased.6 Consistent with the graphical analysis, regressing the proportion of

choice reversals on the expected value of the distracter revealed a positive but insignificant

coefficient on the expected value of the distracter (model (2) in Table 6).

A possible interpretation of the lack of the effect of the expected value of the distracter

on the frequency of choice reversals that is that either salience and divisive normalizaton

are both counteracting each other which results in null effect. Alternatively, since all of the

distracter lotteries that we have analyzed so far were first-order stochastically dominated by

6T-test between trinary low and trinary med shows insignificant difference (0.082 vs 0.082, p=0.995), and
t-test between trinary low and trinary high shows insignificant difference (0.082 vs 0.090, p=0.494).
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Figure 6: Predicted and observed proportion of observed choice reversals as the value of the
distracter lottery increases. In (a) the blue solid line is the divisive normalisation prediction
and the dashed red line is salience prediction in set 1.

target lotteries and of very low value, varying the parameters of the distracters was simply

not a strong-enough manipulation to change the proportion of choice reversals. We tested

this idea in two ways. First, we redid the analysis of trinary choice sets in set 1, now including

also cases with dattract distracters, that have higher payoffs. This expansion of the dataset

results in an increase of the coefficient value and significance (p < 0.1) (Table 6 model(3)).

Furthermore, we analyzed the second set of target lotteries, where the distracters had

substantially higher payoffs and were not first-order stochastically dominated by target lot-

teries. In this second set, distracters never change the range of rewards and are never in the

attraction regions to target lotteries. Consistent with our intuition, the proportion of choice

reversals significantly increases as the value of the distracter lottery increases from low to

high (0.111 vs 0.150, p = 0.005). This result is illustrated in Figures 6(d) and 6(e) and is

significant in the regression analysis (Table 6 model (4)).

Overall, we conclude that consistent with divisive normalization model, choice reversals

increase in the value of the distracter lottery, provided that the distracter lottery is not

first-order stochastically dominated.

5.3 Attraction effects

Based on previous literature, we formed the following hypothesis:

Hypothesis 4. Introduction of a distracter lottery in the attraction to a region will increase
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participants’ choices of lottery a

In the first set of target lotteries, the dattract distracters are in the attraction to a region

(see Figure 2). They are weakly dominated by target lottery a but not target lottery b and

therefore provide an opportunity to test whether attraction effects exist in our experiment.

If attraction effects existed, participants would choose lottery a more often when distractor

dattract is introduced. Lottery a was selected 47.59% of the time from {a,b} and 47.80%

from {a,b,dattract}, a difference that is not statistically significant (p = 0.846 in a paired

t-test). The result is illustrated in Figure 7.
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Figure 7: Proportion of lottery a choices with and without lotteries in the attraction to a
region

Comparison of the frequency of lottery a choices from {a,b,dNR} and {a,b,dNR, eNR}
provides another opportunity to test for attraction effects. It is a bit less usual test of

attraction effects though because we will be comparing three alternative choice set with

a four alternative choice set. While lottery dNR that occurs in both of the choice sets is

dominated by both of the target lotteries, lottery eNR is dominated only by lottery a and

not by b. We therefore hypothesize, that addition of lottery eNR can draw people to choose

lottery a more often. This is not the case. 50.50% selected a out of {a,b,dNR} and 52.48%

selected it out of {a,b,dNR, eNR} (p = 0.091 in a paired t-test).7

The trinary attraction cases in the first set of target lotteries were designed to directly test

Proposition 8 which offers a refinement over the traditional approach to attraction effects.

Rewards in dattract lotteries are always dominated by rewards in lottery a, but not lottery

7Choice Sets 2 and 7 are excluded from this analysis as lottery eNR is not located in the ’attraction to a
region
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b. If the choice an individual made in the binary target case does not match the choice

made in the trinary attraction case, then lottery dattract is a revealed reference alternative

for that individual. For the participants that reveal dattract as a reference alternative, Ok

et al. (2015) predict that choosers will select lottery a in the trinary attraction case. This is

because lottery a is the only lottery that dominates dattract on every attribute.

To test this prediction, we first excluded observations where a participant chose lottery

dattract in the ‘trinary attraction case’, as the theory predicts that the referent alternative

will not be chosen. As a next step, we created a sample of choices in which a participant’s

choice in the ‘trinary attraction case’ differs from the lottery she consistently chose in the

binary target case. According to these theory, for these choices, lottery dattract must be a

revealed reference alternative for the participant. In this sample, Ok et al. (2015) predict

that lottery a should always be chosen. At the very minimum, there should be some degree

of attraction of participant’s choices towards lottery a. To the contrary, participants were

not attracted to lottery a any more than they were attracted to lottery b. Lottery a was

selected 48.04% with the decoy and 47.59% without the decoy (not significant difference,

p=0.588).

6 Conclusions

Ample empirical research demonstrated that choice depends on the set of available alterna-

tives in ways that violate the assumption of independence of irrelevant alternatives. Many

explanations have been provided to explain these choice patterns but economics and psychol-

ogy literature has not yet provided the ultimate explanation for such dependence. In this

paper, we sought to understand whether a model that originated in neuroscience as a de-

scriptive and normative model of how neurons encode the intensity of stimuli can accurately

predict how the introduction of irrelevant alternatives affects choice.

We predicted that under divisive normalization the inclusion of additional dominated

alternatives to the choice set does not affect an individual’s preference, in our case risk atti-

tude. Instead, it affects choice by compressing the values assigned to each of the alternatives.

While the ordinal ranking of the alternatives remains the same, as more and/or higher-valued

distracters are added to the choice set, the decision-maker becomes more random. These

predictions are consistent with our data. We found that risk attitudes are not affected by

the addition of dominated lotteries, but individuals are more likely to pick their second best

as the number and value of the distracting lotteries increases. Importantly, we designed our

experiments in a way that allows us to conclude that the observed effects are not driven

by range normalization, salience, and attraction effects. While concluding that divisive nor-

malization can replace these other theories would be premature, we can conclude that these

existing theories do not capture choice set effects fully and that the unique predictions made
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by the divisive normalization model are observed in the data.

The effects that we observe are not massive, but they are significant and consistent with

our knowledge of the nervous system and with previous literature. In fact, they are perhaps

just right in size to make them believable. In our experiment, participants chose the less

preferred alternative 10.85% of the time. As the expected value of the distracter increased by

$1, the likelihood of choosing the second best alternative went up by 0.5-1.6%. The addition

of a distracter option made participants 2-2.5% more likely to choose the second best. How

these effects scale up as the rewards get bigger or as more distracters are added to the choice

set remains to be established.
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Appendix A Further results

In extending divisive normalization to risky decisions, we encountered theoretical ambiguity

as to the correct functional form of the denominator in the model specification (5). As ours is

a novel extension of normalization to an environment of risky choice, there is uncertainty as

to whether the probability of every state in every lottery in the choice set M should feature

in the denominator as in equation 5, or only the state’s payoff. We therefore included the

trinary probability case in both sets of lotteries to collect some preliminary evidence on how

probabilities could be incorporated in the divisive normalization model.

In both sets of lotteries, we constructed a trinary probability case lottery that differed

from lottery d or lottery dNR only in the probability of receiving each payout. Specifically,

instead of being a 50-50 lottery, dprob had the same payoffs as dNR but only 30% chance of

the higher payoff. dprob had the same payoffs as d but only 20% chance of the higher payoff.

We did not find a significant effect of the variation in probability on the likelihood of

choice reversals. In the first set of lotteries when the probability of receiving the higher

payoff was 30%, there were 8.48% of choice reversals which increased to 8.76% when the

probability of receiving the higher payoff was equal to 50% (p=0.776 in a paired t-test). In

the second set of lotteries, when the probability of receiving the higher payoff was 20%, there

were 13.57% of choice reversals compared to 14.01% for a lottery with 50% odds of receiving

the higher payoff (p=0.728 in a paired t-test).
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Figure A1: Proportion of choice reversals when the probability of receiving the lottery upside
varied, separately for set 1 and set 2

We did not find a significant effect of probability of payoffs on the propensity to make

choice reversals. A more thorough analysis with more variation in probabilities and payoffs

would be useful to verify whether this is a general feature or just a feature of our design where

the variation in probabilities was moderate. Especially in set 1, where the distracter lotteries
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are first order stochastically dominated, we conclude ex-post our probability manipulation

had very little chances of being effective.

Appendix B Instructions

[Opening Screen]

Thank you for participating in today’s study with the School of Economics. The session will

last around 60 minutes. Please let the supervisor know if you do not understand something

by raising your hand.

Please fill in your consent form. The experiment will begin when everybody has completed

their forms.

[Screen 2]

Payment

For participating in this experiment, you will be paid a show up fee of $10. You will receive

this regardless of any the choices that you make today.

Your final compensation will depend on one randomly selected decision that you make in the

experiment. Each of your decisions has an equal chance to be selected for payment. You will

be told at the end of the experiment which decision was selected and you will receive what

you selected in cash at the conclusion of the experiment. Only you and the experimenter

will know how much you earned.

The choices you make today are important because your payment will be based on them.

There are no wrong choices in this experiment. By responding truthfully, you will receive

your most preferred outcome.

[Screen 3]

In this experiment, you will be repeatedly asked to choose between different monetary op-

tions, similar to those in the example below:
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The relative sizes of the coloured areas represent the odds of receiving the corresponding

monetary amounts written inside these areas. Here the option on the left (A) pays $15 with

a 50 per cent chance or $5 with a 50 per cent chance. The option on the right (B) pays $17

with a 30 per cent chance or $3 with a 70 per cent chance. Your task is to indicate which

option you prefer by clicking the button below it.

[Screen 4]

If you chose the option on the left, the experimenter will present you with a bag containing

100 chips, numbered from 1 to 100. Without looking, you will place your hand in the bag

and select a chip. If the number on the chip is between 1 and 50 inclusive, then you will

receive an additional $15 on top of your show up fee. If the number on the chip is between

51 and 100 inclusive, you will receive an additional $5 on top of your show up fee.

If you chose the option on the right, the experimenter will present you with a bag con-

taining 100 chips, numbered from 1 to 100 and ask you to choose a chip without looking. If

the number on the chip is between 1 and 30 inclusive, you will receive an additional $17 on

top of your show up fee. If the number on the chip is between 31 and 70 inclusive, you will

receive an additional $3 on top of your show up fee.

[Screen 5]

In some questions, you will be presented with more than two options to choose from. Here

is an example:
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Suppose this decision is the one that is randomly selected for payment.

If you chose the option on the left (A), you have a 60 per cent chance of receiving $15

and a 40 per cent chance of receiving $6.

If you chose the option second from the left (B), you have a 40 per cent chance of re-

ceiving $14 and a 60 per cent chance of receiving $9.

If you chose the option third from the left (C), you have a 50 per cent chance of receiv-

ing $8 and a 50 per cent chance of receiving $7.

If you chose the option on the right (D), you have a 30 per cent chance of receiving $17

and a 70 per cent chance of receiving $3.

The outcome of the lottery that you chose will be decided by you choosing a chip from

a bag that contains 100 numbered chips. The probability displayed in the blue square cor-

responds to the range of numbers you must select to win the amount displayed in the blue

square.

[Screen 6]

We want to make sure that you understand the task and payment. We will ask you to answer

what would happen and how much money you would make in two different scenarios. This is

not the real task but practice questions that do not count for anything. If you have trouble

answering the question, put your hand up and the experimenter will come over to help you.

[Subjects then completed eight comprehension true/false questions before beginning the real

task]
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Appendix C Questionnaire

[Screen 1]

1. What is your age?

2. What is your gender?

(a) Male

(b) Female

(c) Not Specified

3. In which general area is the degree you are currently enrolled in or last completed?

(a) Economics

(b) Arts and Social Sciences

(c) Mathematics

(d) Law

(e) Science

(f) Engineering

(g) Business

(h) Medicine

(i) No degree

4. Are you a domestic or an international student?

(a) Domestic

(b) International

(c) Not a student

5. In what year did you graduate from university, or when do you expect to graduate?

6. Are you currently employed?

(a) Full time

(b) Part time

(c) Not employed

7. How wealthy would you consider yourself?

(a) Very poor
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(b) Poor

(c) Neither poor nor wealthy

(d) Wealthy

(e) Very wealthy

8. What is your current weekly budget on recreational activities?

[Screen 2]

1. What did you think the experiment was about?

2. Did you have any strategies when answering the questions?

39



Appendix D Lottery lists

Appendix D.1 First Set of Lotteries

Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Target {a,b} 1 1 10 9 0.5 49 1 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 1 2 10 9 0.5 49 1 0.5 10 1 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 1 3 10 9 0.5 49 1 0.5 5 1 0.5 0 0 0

Salience-reversing Low {a,b,dSRlow} 1 4 10 9 0.5 49 1 0.5 3 0 0.5 0 0 0

Trinary Probability {a,b,dprob} 1 5 10 9 0.5 49 1 0.5 10 1 0.3 0 0 0

Trinary Attraction {a,b,dattract} 1 6 10 9 0.5 49 1 0.5 10 4 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 1 7 10 9 0.5 49 1 0.5 10 1 0.5 15 6 0.5

Target {a,b} 2 8 10 9 0.5 39 1 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 2 9 10 9 0.5 39 1 0.5 9 1 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 2 10 10 9 0.5 39 1 0.5 4 1 0.5 0 0 0

Salience-reversing Low {a,b,dSRlow} 2 11 10 9 0.5 39 1 0.5 1 0 0.5 0 0 0

Trinary Probability {a,b,dprob} 2 12 10 9 0.5 39 1 0.5 9 1 0.3 0 0 0

Trinary Attraction {a,b,dattract} 2 13 10 9 0.5 39 1 0.5 9 4 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 2 14 10 9 0.5 39 1 0.5 9 1 0.5 9 6 0.5

Target {a,b} 3 15 10 9 0.5 32 1 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 3 16 10 9 0.5 32 1 0.5 8 1 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 3 17 10 9 0.5 32 1 0.5 4 1 0.5 0 0 0
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Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Salience-reversing Low {a,b,dSRlow} 3 18 10 9 0.5 32 1 0.5 2 0 0.5 0 0 0

Trinary Probability {a,b,dprob} 3 19 10 9 0.5 32 1 0.5 8 1 0.3 0 0 0

Trinary Attraction {a,b,dattract} 3 20 10 9 0.5 32 1 0.5 8 4 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 3 21 10 9 0.5 32 1 0.5 8 1 0.5 10 7 0.5

Target {a,b} 4 22 11 8 0.5 23 2 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 4 23 11 8 0.5 23 2 0.5 11 2 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 4 24 11 8 0.5 23 2 0.5 6 2 0.5 0 0 0

Salience-reversing Low {a,b,dSRlow} 4 25 11 8 0.5 23 2 0.5 3 1 0.5 0 0 0

Trinary Probability {a,b,dprob} 4 26 11 8 0.5 23 2 0.5 11 2 0.3 0 0 0

Trinary Attraction {a,b,dattract} 4 27 11 8 0.5 23 2 0.5 11 5 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 4 28 11 8 0.5 23 2 0.5 11 2 0.5 9 6 0.5

Target {a,b} 5 29 11 8 0.5 21 2 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 5 30 11 8 0.5 21 2 0.5 8 2 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 5 31 11 8 0.5 21 2 0.5 5 1 0.5 0 0 0

Salience-reversing Low {a,b,dSRlow} 5 32 11 8 0.5 21 2 0.5 2 0 0.5 0 0 0

Trinary Probability {a,b,dprob} 5 33 11 8 0.5 21 2 0.5 8 2 0.3 0 0 0

Trinary Attraction {a,b,dattract} 5 34 11 8 0.5 21 2 0.5 8 5 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 5 35 11 8 0.5 21 2 0.5 8 2 0.5 10 8 0.5

Target {a,b} 6 36 11 8 0.5 20 2 0.5 0 0 0 0 0 0

Non-reversing Trinary {a,b,dNR} 6 37 11 8 0.5 20 2 0.5 7 2 0.5 0 0 0

Salience-reversing Medium {a,b,dSRmed} 6 38 11 8 0.5 20 2 0.5 4 1 0.5 0 0 0
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Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Salience-reversing Low {a,b,dSRlow} 6 39 11 8 0.5 20 2 0.5 2 0 0.5 0 0 0

Trinary Probability {a,b,dprob} 6 40 11 8 0.5 20 2 0.5 7 2 0.3 0 0 0

Trinary Attraction {a,b,dattract} 6 41 11 8 0.5 20 2 0.5 7 5 0.5 0 0 0

Non-reversing Quad {a,b,dNR, eNR} 6 42 11 8 0.5 20 2 0.5 7 2 0.5 10 5 0.5

Appendix D.2 Second Set of Lotteries

Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Target {a,b} 7 43 14 11 0.5 30 5 0.5 0 0 0 0 0 0

Trinary {a,b,d} 7 44 14 11 0.5 30 5 0.5 17 8 0.5 0 0 0

A/D {a,d} 7 45 14 11 0.5 0 0 0 17 8 0.5 0 0 0

B/D {b,d} 7 46 0 0 0 30 5 0.5 17 8 0.5 0 0 0

Trinary Low {a,b,dlow} 7 47 14 11 0.5 30 5 0.5 15 6 0.5 0 0 0

Trinary Probability {a,b,dprob} 7 48 14 11 0.5 30 5 0.5 17 8 0.2 0 0 0

Quad {a,b,d, e} 7 49 14 11 0.5 30 5 0.5 17 8 0.5 15 9 0.5

Target {a,b} 8 50 14 11 0.5 28 5 0.5 0 0 0 0 0 0

Trinary {a,b,d} 8 51 14 11 0.5 28 5 0.5 19 7 0.5 0 0 0

A/D {a,d} 8 52 14 11 0.5 0 0 0 19 7 0.5 0 0 0

B/D {b,d} 8 53 0 0 0 28 5 0.5 19 7 0.5 0 0 0
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Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Trinary Low {a,b,dlow} 8 54 14 11 0.5 28 5 0.5 16 6 0.5 0 0 0

Trinary Probability {a,b,dprob} 8 55 14 11 0.5 28 5 0.5 19 7 0.2 0 0 0

Quad {a,b,d, e} 8 56 14 11 0.5 28 5 0.5 19 7 0.5 16 8 0.5

Target {a,b} 9 57 14 11 0.5 26 5 0.5 0 0 0 0 0 0

Trinary {a,b,d} 9 58 14 11 0.5 26 5 0.5 18 7 0.5 0 0 0

A/D {a,d} 9 59 14 11 0.5 0 0 0 18 7 0.5 0 0 0

B/D {b,d} 9 60 0 0 0 26 5 0.5 18 7 0.5 0 0 0

Trinary Low {a,b,dlow} 9 61 14 11 0.5 26 5 0.5 15 6 0.5 0 0 0

Trinary Probability {a,b,dprob} 9 62 14 11 0.5 26 5 0.5 18 7 0.2 0 0 0

Quad {a,b,d, e} 9 63 14 11 0.5 26 5 0.5 18 7 0.5 15 8 0.5

Target {a,b} 10 64 13 10 0.5 24 4 0.5 0 0 0 0 0 0

Trinary {a,b,d} 10 65 13 10 0.5 24 4 0.5 18 6 0.5 0 0 0

A/D {a,d} 10 66 13 10 0.5 0 0 0 18 6 0.5 0 0 0

B/D {b,d} 10 67 0 0 0 24 4 0.5 18 6 0.5 0 0 0

Trinary Low {a,b,dlow} 10 68 13 10 0.5 24 4 0.5 15 5 0.5 0 0 0

Trinary Probability {a,b,dprob} 10 69 13 10 0.5 24 4 0.5 18 6 0.2 0 0 0

Quad {a,b,d, e} 10 70 13 10 0.5 24 4 0.5 18 6 0.5 15 7 0.5

Target {a,b} 11 71 12 10 0.5 22 4 0.5 0 0 0 0 0 0

Trinary {a,b,d} 11 72 12 10 0.5 22 4 0.5 15 7 0.5 0 0 0

A/D {a,d} 11 73 12 10 0.5 0 0 0 15 7 0.5 0 0 0

B/D {b,d} 11 74 0 0 0 22 4 0.5 15 7 0.5 0 0 0

Trinary Low {a,b,dlow} 11 75 12 10 0.5 22 4 0.5 13 5 0.5 0 0 0

Trinary Probability {a,b,dprob} 11 76 12 10 0.5 22 4 0.5 15 7 0.2 0 0 0
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Case Name Case
Target

Pair

Choice

Set

No.

Lottery a Lottery b Lottery d Lottery e

a1 a2 pa1 b1 b2 pb1 d1 d2 pd1 e1 e2 pe1

Quad {a,b,d, e} 11 77 12 10 0.5 22 4 0.5 15 7 0.5 13 8 0.5

Target {a,b} 12 78 11 10 0.5 19 4 0.5 0 0 0 0 0 0

Trinary {a,b,d} 12 79 11 10 0.5 19 4 0.5 15 6 0.5 0 0 0

A/D {a,d} 12 80 11 10 0.5 0 0 0 15 6 0.5 0 0 0

B/D {b,d} 12 81 0 0 0 19 4 0.5 15 6 0.5 0 0 0

Trinary Low {a,b,dlow} 12 82 11 10 0.5 19 4 0.5 12 5 0.5 0 0 0

Trinary Probability {a,b,dprob} 12 83 11 10 0.5 19 4 0.5 15 6 0.2 0 0 0

Quad {a,b,d, e} 12 84 11 10 0.5 19 4 0.5 15 6 0.5 12 7 0.5
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