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Introduction 
In the 17th century, Pascal famously argued that people should maximize expected value when 

making decisions and that failing to do so is a mistake – a strategy still employed by nearly all 

corporate decision-makers. Such an approach, classically, is equivalent to relying on a linear 

utility function. A key appeal of the linear utility function is its objective accuracy and the long-

term maximization of accumulated wealth it provides. It achieves this by preserving objective 

consistency in pair-wise offer comparisons—for example, the utility difference between $10 

and $20 is equal to that between $20 and $30. Despite the simplicity of Pascal’s argument, 

empirical evidence is widely acknowledged to show that people frequently deviate from 

expected value maximization even for repeated decisions where alternative decisions would 

lead reliably to higher average earnings. The prevailing explanation for this deviation dates to 

the 18th century. Bernoulli (1954) explained risk aversion in casino players by arguing that 

people do not aim to maximize the expected monetary value but rather a concave (logarithmic) 

expected utility, a function shaped by exogenously determined risk preferences (or the rate of 

the diminishing marginal utility). Generations of economists and psychologists have built on 

this foundation with richer notions of what this exogenously determined utility function might 

look like. Prospect Theory (Kahneman and Tversky 1979), the most often applied form of this 

approach, describes choosers as having an S-shaped utility function.  

 

One striking feature of the studies of utility conducted over the past three centuries is that 

economic theorists have generally remained agnostic about the function’s origin (exceptions 

are discussed below and see also a comprehensive review by Vieider (2025)). The standard 

economic formulation: choosers are endowed with a stable monotonic utility function, belies 

the question of just who does this ‘endowing’ and for what purpose. It is still a standard in 

economics that individual preferences are taken as the primitive element of the choice model—

an intrinsic feature of the decision-maker, akin to personality traits. This “black box” approach 

to where the utility function comes from has also defined much of neoclassical economic 

policy. It suggests that any intervention in decision-making—whether through regulation or 

behavioral nudges—must be scrutinized, as it may steer individuals away from choices that 

reflect their own best interests as defined by their inferred idiosyncratic utility functions.  

 

In this paper, taking advantage of the 21st century developments in neuroscience, we (an 

economist, a neuroscientist, and a computer scientist) highlight what we believe to be a missing 
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piece in the theory – the absence of a specification of just what it is that a reasonable decision-

maker should be maximizing when facing small-stakes repeated decision problems. The central 

feature of our approach builds on the recently developed observation that the biological 

encoding of the subjective value, used by a chooser to guide choice and select an option with 

a higher value, is constrained by well-documented limitations of the nervous system imposed 

by the laws of physics and the biological constraints of evolution.1 Starting from this point we 

introduce a new, biological definition of cognitive constraints, grounded in neuroscience and 

random utility theory (McFadden 1974). In addition to assuming that utility is subject to some 

randomness in the form of an error term, we assume that it is bounded, which is another feature 

of the neurobiological representation imposed by the laws of physics and observed again and 

again in neurobiology. We share the core of this biologically accurate definition of limited 

cognitive capacity with Netzer et al. (2025) but differ from previous approaches that modelled 

cognitive constraints either through limited number of utility thresholds (Robson 2001) or did 

not assume a bound on a utility function at all and instead studied the consequences of the 

limited capacity in decoding noisy utility signals (Woodford, 2012). Like Netzer (2009), we 

explicitly state that the goal of a chooser is always to go home with more rather than less.2 With 

these assumptions, we start off by examining what utility functions maximize total expected 

earnings in various choice environments as a function of cognitive limitations. Unlike Netzer 

(2009), who solve for optimal utility in the limit as cognitive capacity approaches infinity, we 

focus on the curvature of optimal utility for choosers with different levels of cognitive capacity 

constraint. Formally, we endogenize the utility function as an object employed by the noisy 

chooser to maximize a well-stated objective function. 

 

Our paper thus contributes to a still relatively small literature that seeks to explain the utility 

function as serving some optimal goal, such as maximizing fitness instead of treating it as an 

exogenously endowed enigmatic function (Bucher & Brandenburger, 2022; Frydman & Jin, 

2021a; Heng et al., 2020; Netzer, 2009; Netzer et al., 2025; Rayo & Becker, 2007; Robson et 

al., 2023; Steverson et al., 2019; Stewart et al., 2015)3. Independent of differences in theoretical 

 
1 In the paper, for simplicity, we refer to this “measurement” subjective value function as utility, recognizing that 
this empirically observed cardinal utility may differ from other notions of utility in economic theory. 
2 In Glimcher, Sinha, and Tymula (2025), we explicitly compare optimal utilities for choosers whose goal is to 
maximize earnings and minimize the number of errors. 
3 Another strand of literature (Polanía et al. 2019, Heng et al. 2020, Frydman and Jin 2021, Khaw et al. 2021) 
focused on the optimal decoding of noisy but unbounded utility signals. See (Vieider 2025) for a comprehensive 
review. 
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assumptions, this literature converges on the notion that an optimal utility function should be 

steeper in regions where choices are made more frequently, and decision mistakes have a 

greater impact on fitness. We replicate this general finding. We demonstrate that the goal of 

expected earnings maximization cannot be achieved using a perfectly linear utility function 

under binding cognitive constraints. Our approach illustrates that curvature in the utility 

function can be a optimal for maximizing earnings in expectation, as long as  the chooser has 

limited cognitive capacity. Further, we demonstrate that the curvature of the optimal utility 

function is not fixed but instead must be flexibly determined by the distribution of prizes in the 

environment in which the chooser operates. These key observations are robust to different 

modelling approaches and are consistently found across the literature (Vieider, 2025). 

 

We extend the literature by making a series of novel contributions. The closest paper to ours is 

Netzer et al. (2025). Like Netzer et al. (2025), we assume a bounded utility with a normally 

distributed error term. Unlike us, in their framework, the curvature in utility is a result of a 

naïve (imperfect) decoding of a noisy signal, rather than the cognitive limitations in utility 

encoding. Netzer et al. (2025) solve for optimal utility assuming that cognitive capacity 

approaches infinity (so it is not a binding constraint) and show that for a naïve decoder, the 

utility will be S-shaped. Unlike all previous papers, we focus on the biological and cognitive 

constraint in utility encoding and explicitly explore how the exact level of cognitive capacity 

affects the selection of an optimal (earnings maximizing) utility function. This extension allows 

us, for example, to offer a new explanation for the age-related changes in decision errors and 

utility curvature that are well-documented in the empirical literature.  

 

In addition, we present several novel results by incrementally studying more and more complex 

choice environments. First, we explicitly manipulate the environmental distribution of prizes 

from which choice options are drawn (while keeping the choice set size fixed) by independently 

changing the number of possible prizes in the environment and their probability of entering a 

choice set. One of the insights that we gain in doing so is that adding more possible prizes to 

the choice environment substantially affects the optimal utility function even when the general 

distributional pattern of the prize environment (such as uniform, normal, or skewed) is 

maintained. Our novel insight is that as the number of possible prizes increases, an S-shaped 

utility function is more likely to emerge as optimal. In line with previous literature, we find 

that S-shaped utility is optimal for normal-like distributions. This is not surprising because the 

normal distribution of prizes has been used as the exemplary justification for S-shaped utility 
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at least since Friedman (1989). What is noteworthy is that as the set of possible prizes increases, 

S-shaped utility can emerge as optimal also for environments with negatively and positively 

skewed prizes for low cognitive capacity choosers. Second, we manipulate the choice set size 

separately from the distribution of prizes. We show that increasing the choice set size has an 

independent effect on the optimal shape of the utility function and that bigger choice set sizes 

often result in S-shaped utility. This richness of insight is feasible, in part, because in addition 

to a closed-form solution, our methodology extends to analytical and simulation/numerical 

approaches (for which we provide the codes for replication and reuse). 

 

Finaly, the major innovation in our paper is that we endogenize cognitive capacity. This is in 

stark contrast to previous papers that assume that cognitive capacity (if not the utility function) 

is an exogenously given limitation. We are the first to quantify the monetary gains from 

increasing cognitive capacity explicitly and we show that these returns are surprisingly low 

(given that endogenous selection of the earnings-maximizing utility function is allowed) and 

that the magnitude of these returns diminishes in capacity. We then compare these gains with 

the costs of additional cognitive capacity to derive the optimal cognitive capacity and utility 

with no binding constraints on the chooser other than the knowledge of the choice environment. 

Once one accounts for the cost to increasing cognitive capacity (as required by the laws of 

physics; see Steverson et al. (2019) for explanation), we show it is optimal to allow for some 

degree of choice error and utility curvature to maximize monetary earnings in expectation. This 

implies that even if the costs of reducing noise in the utility function were quite low, what are 

usually described as irrationalities in decision-making might well be expected to persist as 

optimal despite hundreds of millions of years of evolutionary pressure on the choice 

mechanism. This may explain why behavioral economists and psychologists have documented 

so many systematic choice irrationalities in a range of choice environments and in a range of 

animal species. We note that while modelling the costs of the factors of production is the bread 

and butter of economic producer theory, this approach has been underutilized in choice theory 

(but see Friedman (1989) for an early argument for incorporating such analysis to choice theory 

and (Steverson et al. 2019, Bucher and Brandenburger 2022) for a recent examples). 

 

Our approach has important implications for revealed preference theory and what we can infer 

from observed choices. If observed choices are shaped by an interaction between the choice 

environment and the cognitive constraints of the chooser, rather than by stable, exogenously 

given preferences, then the foundation of many economic models—and the policies based upon 
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them—may require reassessment. We propose that rather than “revealed preference theory,” a 

more accurate description of a rational theory of human decision making may be “revealed 

cognition and decision-environment theory”. If our theory is correct, then one could predict the 

utility (and hence choice structure) of any chooser for any given environment fully known by 

the chooser.  

 

Our findings contribute to a large body of literature on heterogeneity in observed utility 

functions which to date largely consists of systematic empirical findings that certain groups 

make more or less risk averse decisions or show different levels of riskless utility curvature (as 

measured without risk in random utility theories) than others. Our approach illustrates how 

environmental factors can lead to concave and convex utilities in the same choosers. We also 

make predictions about the impact of declining cognitive capacity such as with aging or 

disease. Our findings align well with the vast literature on the factors that correlate with risk 

attitudes or utility curvature, such as gender, age, natural disasters, economic shocks, 

socioeconomic differences, sleep deprivation, and IQ. We extend that literature by making new 

predictions about how environments affect utility curvature and our framework enables the 

study of further questions such as whether the costs of cognitive capacity increase with age. 

We elaborate on how our framework that rests only on the cognitive constraints and 

distributional properties of the reward environment provides a new understanding of these 

empirically well-researched heterogeneities in the utility functions in section 5. 

 

Our findings highlight the need for new axiomatic foundations of economics in which decisions 

(and utilities) adjust to the choice environment. For example, in our framework axioms such 

as independence of irrelevant alternatives or regularity will often appear to be violated when a 

choosers’ environment changes. Our framework provides the basis for new axiomatic 

foundations by making precise predictions about the probability of making errors and 

preference reversals across different choice environments. For example, we predict that the 

chooser’s utility is sensitive to prize distributions, and that the same reward will yield higher 

utility in environments with positively than negatively skewed prizes, consistent with recent 

empirical findings (Khaw et al. 2017, Frydman and Jin 2021, Guo and Tymula 2021). 

Additionally, we predict that both an increase in the choice set size and an increase in the 

number of prizes in the environment independently increase the probability of making an error, 

a phenomenon known as choice overload. We can also explain why people who live in poorer 
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environments make better decisions when shopping for groceries but will have more difficulty 

when deciding between high-value financial investments.  

 

Beyond theory, our findings have practical policy applications. If it is true that people’s true 

objective is to maximize expected earnings and the observed choices are not a reflection of 

exogenously given preferences but instead are due to a combination of cognitive limitations 

and environment, then economists may reconsider their approach to policy. We discuss some 

possible avenues in section 4. 

 

Following McFadden’s classical approach (McFadden 1974), we define utility curvature using 

choice stochasticity, meaning that our analysis is conducted entirely in the domain of riskless 

choice. While our findings appear to have clear implications for risky choice, it should be noted 

that we do not address lotteries as choice objects directly in the results section. In the 

discussion, we explore an extension of this work to risky choice. 

 

The paper proceeds as follows: Section 2 presents our theoretical framework, outlining how 

cognitive constraints shape utility functions. Section 3 develops our main results, 

demonstrating the impact of different environmental factors and cognitive constraints on 

optimal decision-making. Section 4 puts our theoretical work in the context of well-known 

empirical findings on the heterogeneity in utility and discusses policy implications. Finally, in 

section 5 we conclude by making further connections to existing research, and potential future 

directions.  

 

 

2. Theoretical Framework 
Consider a general framework with a chooser whose objective is to maximize total earnings 

over all decisions. For simplicity, we assume that the outcomes of all decisions are immediate 

allowing us to abstract away from discounting. The set of possible riskless prizes is defined by 

their objective values as 𝑋 = {𝑥!, 𝑥", … 𝑥#} and all prizes are equally spaced in terms of their 

objective value such that 	∀𝑖 > 0, 	𝑥$ − 𝑥$%" = 𝑎 where 𝑎 ∈ ℝ&. Choice sets are subsets of 𝑋 

with the prizes in each choice set randomly and independently drawn from a specified 

probability distribution. This distribution thus defines which prizes are abundant, which prizes 

the chooser is more likely to encounter in choice sets, and which prizes are expected to occur 
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rarely. The chooser picks one alternative from a choice set by maximizing a random and 

subjective utility function 𝑈(𝑥) = 𝑢(𝑥) + 𝜖, with a bound on 𝑢(𝑥) ∈ [0, 𝑘] (𝑘 ∈ ℝ&) and the 

noise term, 𝜖, which follows a standard normal distribution, 𝑁~(0, 𝜎').	 4 We impose the 

restriction that the utility function cannot be infinite. This comes from the constraint that utility 

must be instantiated in the brain which is a system constrained by the laws of physics. This is 

required of the brain because the number of neurons in the brain is finite and the amount of 

information that each neuron can carry is finite, imposed by physical law and verified by 

empirics, as well. We make no assumptions here about how binding that constraint is, just that 

it exists. As in any random utility model, it is possible that 𝑈=𝑥(> < 𝑈(𝑥$) when 𝑥( > 𝑥$ and 

hence by maximizing 𝑈 the chooser may pick an option with a lower objective value. We call 

such instances errors. 

 

Definition. The chooser has a limited capacity (c) defined as 𝑐 = )
*
. 

 

The capacity limit, c, is defined as the ratio of the maximum value that 𝑢(𝑥) can take (k) and 

the standard deviation of the noise term (𝜎). In plain words, it captures how many standard 

deviations of noise, the chooser can fit within 𝑢(𝑥) bounds of 0 and 𝑘. The precision with 

which the chooser distinguishes between different options and hence the probability of making 

an error is directly related to capacity. Other things being equal, the smaller the capacity, the 

more likely it is that the chooser makes an error.  

 

Remark: With a goal to maximize the earnings, the chooser can make fewer errors by taking 

advantage of the whole 𝑢(𝑥)	range and setting 𝑢(𝑥!) = 0 and 𝑢(𝑥#) = 𝑘. 

 

In the next section, we use a combination of analytical and computational methods to establish 

the 𝑢(𝑥) that allows the chooser to achieve their objective of maximum total earnings. 

 

3. Optimal Utility 
 

3.1. Closed-form Solution for a Simple Case 

 
4 The cumulative distribution function (CDF) of this distribution is denoted by Φ(. ) and the probability 
distribution function (PDF) as 𝜙(. ). 



 9 

Assume there are three prizes 𝑋 = {𝑥!, 𝑥", 𝑥'} and choice sets are always binary. The possible 

choice sets {𝑥!, 𝑥"}, {𝑥!,𝑥'}, and	{𝑥",𝑥'} occur with respective probabilities 𝑝!", 𝑝!', and	𝑝"'. 

 

Proposition 1: To maximize earnings, the chooser sets 𝑢(𝑥!) = 0, 𝑢(𝑥') = 𝑘, and 

 

𝑢(𝑥") =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0																																				𝑖𝑓			

1
2𝑘
(𝑘' + 4𝜎'𝑙𝑛

𝑝!"
𝑝"'

) < 0	

1
2𝑘 (𝑘

' + 4𝜎'𝑙𝑛
𝑝!"
𝑝"'

)							𝑖𝑓		0 <
1
2𝑘 (𝑘

' + 4𝜎'𝑙𝑛
𝑝!"
𝑝"'

) < 𝑘

𝑘																																	𝑖𝑓		
1
2𝑘 (𝑘

' + 4𝜎'𝑙𝑛
𝑝!"
𝑝"'

) > 𝑘

		 

 

Proof 

To show: derive the optimal 𝑢(𝑥"). Maximizing earnings is equivalent to minimizing the 

objective value of expected loss due to errors. In our simple case the chooser can make three 

types of errors. First, the chooser can choose 𝑥!	from	{𝑥!, 𝑥"}, an error which happens with 

probability 𝑃(𝑈(𝑥!) > 𝑈(𝑥")) = 1 − Φ(+(-!)%+(-")
√'*#

) = 1 − Φ(+(-!)
√'*#

). Second, the chooser 

can choose 𝑥"	from	{𝑥", 𝑥'} which happens with probability 𝑃(𝑈(𝑥") > 𝑈(𝑥')) = 1 −

ΦU+(-#)%+(-!)
√'*#

V = 1 − ΦU)%+(-!)
√'*#

V. The objective cost of each of these two types of error is 

equal to 𝑎 ≡ 𝑥$ − 𝑥$%". Third, the chooser can choose 𝑥!	from	{𝑥!, 𝑥'} with probability 

𝑃(𝑈(𝑥!) > 𝑈(𝑥')) = 1 − ΦU+(-#)%+(-")
√'*#

V = 1 − ΦU )
√'*#

V. Note that the probability of the 

third type of error is unaffected by 𝑢(𝑥") and therefore we disregard it.  

 

Let 𝑢(𝑥") = 𝑦". The chooser selects 𝑢(𝑥") to minimize the expected cost of making the first 

two types of errors by solving: 

min
0!

𝑝!"(1 − Φ[
𝑦"

√2𝜎'
] 𝑎 + 𝑝"'(1 − Φ[

𝑘 − 𝑦"
√2𝜎'

] 𝑎 

 

The first order condition yields: 
1
12!

( 𝑝!"(1 − ΦU
0!

√'*#
V 𝑎 + 𝑝"'(1 − ΦU

)%0!
√'*#

V 𝑎)=0 ⟺ 

−𝑎 1
12!

(𝑝!"ΦU
0!

√'*#
V + 𝑝"'ΦU

)%0!
√'*#

V)=0 ⟺ 

−𝑎(𝑝!"𝜙 U
0!

√'*#
V 1
12!

U 0!
√'*#

V + 𝑝"'𝜙 U
)%0!
√'*#

V 1
12!

U)%0!
√'*#

V)=0 ⟺ 
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−𝑎(𝑝!"
"

√'3
𝑒%

$!
#

%&#
"

√'*#
− 𝑝"'

"
√'3

𝑒%
(()$!)#		

%&#
"

√'*#
)=0 ⟺ 

𝑝"'𝑒
%(()$!)

#		
%&# = 𝑝!"𝑒

% $!
#

%&#  ⟺ 

𝑒%
(()$!)#		

%&#
& $!

#

%&# = 4"!
4!#

 ⟺ 

𝑒
#($!)(#		

%&# = 4"!
4!#

 ⟺ 

')0!%)#		
6*#

= 𝑙𝑛 4"!
4!#

 ⟺ 

𝑦" = 𝑢(𝑥") =
1
2𝑘 (𝑘

' + 4𝜎'𝑙𝑛
𝑝!"
𝑝"'

) 

■ 

Although our setting is simple, Proposition 1 provides the first set of key insights. First, it 

demonstrates how the probability distribution of prizes affects the optimal 𝑢(𝑥) in a capacity-

constrained chooser. The larger the probability of encountering {𝑥!, 𝑥"}, relative to {𝑥", 𝑥'}, the 

larger value of the optimal 𝑢(𝑥"). This occurs because it is optimal to increase the distance 

between the utilities and thus decrease the number of erroneous choices in the more frequently 

encountered choice set. Note that when choice sets {𝑥!, 𝑥"} and {𝑥", 𝑥'} are equally likely 

(𝑝!" = 𝑝"'), in this simple case, the optimal solution simplifies to 𝑢(𝑥") =
)
'
 meaning that 

optimal 𝑢(𝑥") is exactly in the middle of the range of possible values of 𝑢(𝑥). Second, we note 

that low capacity can push 𝑢(𝑥") to the boundary when 𝑝!" ≠ 𝑝"'. For example, when 4"!
4!#

>

1, the lower the upper bound 𝑘 and/or the higher the standard deviation of noise (𝜎), the more 

likely it is that 𝑢(𝑥") = 𝑘 (because it is more likely that "
')
(𝑘' + 4𝜎'𝑙𝑛 4"!

4!#
) > 𝑘). When 4"!

4!#
<

1, the lower the bound 𝑘 and the higher the standard deviation of noise (𝜎), the more likely it 

is that 𝑢(𝑥") = 0, because it is more likely that "
')
(𝑘' + 4𝜎'𝑙𝑛 4"!

4!#
) < 0. This means that more 

cognitively constrained choosers are more likely to make fully random decisions for some 

values of prizes. Third, as the capacity increases, in the limit the optimal 𝑢(𝑥) approaches a 

linear function, even when 𝑝!" ≠ 𝑝"'. Trivially, if 𝑢(𝑥) is noiseless, any 𝑢(𝑥) that preserves 

the preference ordering of prizes is equally optimal. Finally, notice that the optimal solution 

does not depend on the cost of a mistake 𝑎. This implies that in this specific simple 

environment, maximizing earnings and minimizing the number of errors yields the same 

optimal 𝑢(𝑥). This implies that a researcher who is interested in figuring out whether choosers 

maximize earnings or minimize errors, will not be able to tell the difference in environments 
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with three prizes and binary choice sets. In an accompanying psychology paper. Glimcher, 

Sinha, and Tymula (2025), we show that this feature does not generalize to more complex 

environments in which it is possible to make such a distinction, as suggested by some previous 

work (Heng et al. 2020).  

 

The key insights from Proposition 1 are illustrated in Figure 1. The three panels A-C illustrate 

choice environments characterized by different distributions of prizes (top panel) and the 

resulting optimal 𝑢(𝑥)′𝑠 that maximize the earnings in these environments for different 

capacity levels (bottom panel). Each of the top figures illustrates the probability with which 

each of the three prizes enters a binary choice set. In panel A, the prizes are distributed such 

that prizes with the lower objective value are more likely to enter a choice set. In panel B, each 

prize is equally likely, and in panel C, the prizes with higher objective value are more likely to 

be in the choice sets. The bottom panel illustrates the optimal 𝑢(𝑥) for each environment at 

different capacity levels.5 What is striking is that even though the chooser has the same 

objective in these three environments (which is to maximize their average earnings), the 

optimal 𝑢(𝑥)’s are different, particularly at low capacities (darker curves). The environment 

with positively skewed prizes, generally produces concave optimal 𝑢(𝑥). The environment 

with uniform distribution of these three prizes, produces a linear 𝑢(𝑥). Finally, the environment 

with negatively skewed prizes, produces convex 𝑢(𝑥). As capacity increases, in each 

environment, the optimal 𝑢(𝑥) becomes more linear and thus closer to standard expected value 

maximization which assumes unlimited capacity. In the following sections, we will examine 

which of these predictions hold as we extend to more complex environments. 

 
5 To draw these figures, we assumed 𝜎 = 1, so that 𝑐 = 𝑘. 
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Figure 1. Closed-Form Solution Optimal Utilities 

 

3.2 Analytical Solution - Any Number of Prizes and Binary Choice  
For simplicity in the remainder of the paper, without loss of generality, we will assume 𝜎 = 1 

which means that capacity and upper bound of 𝑢(𝑥) are equal, 𝑐 = 𝑘. This allows us to draw 

optimal 𝑢(𝑥) in units of capacity without introducing additional notation. We do this because 

we prefer this unit of utility as it comprehensively captures the effects of both 𝑘 and 𝜎 on 

precision and probability of making errors. We assume 𝜎 = 1  to avoid the confusion that could 

arise from the introduction of unnecessary notation for a utility with a different cardinal unit. 

This means that the cardinal units of utility for the rest of the presentation are in standard 

deviations, a representation originally captured by standard random utility theory (McFadden 

1974). However, readers should keep in mind that an increase in capacity can be a result of an 

increase in 𝑘, decrease in 𝜎, or both. This assumption of course implies that to take advantage 

of the whole available range of 𝑢(𝑥), the chooser will set the utility of the highest value prize 

as 𝑢(𝑥#) = 𝑐 = )
*
. 

 

Let us now consider a slightly more complicated choice environment in which the set of 

possible prizes is larger than 3 (|𝑋| > 3) and the choice sets are still binary. Given that there 

are now more error types (because there are more possible binary choice sets), we solve for 
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optimal 𝑢(𝑥) using a different procedure. Here, without loss of generality, we assume that for 

all 𝑖, the objective value of 𝑥$ = 𝑖 and 𝑎 = 1. 

 

Our procedure, coded in Python, is as follows: First, we define the environment by a finite set 

of possible prizes 𝑋 and a probability distribution 𝑃 that determines how likely each of the 

prizes is to enter a binary choice set. Second, we assume a capacity limit 𝑐. Third, we set 

𝑢(𝑥!) = 0 and 𝑢(𝑥#) = 𝑐. Our task is to find optimal 𝑢(𝑥$) for all 𝑖 ∈ (0, 𝑛). Given that there 

is an infinite number of candidate optimal utility functions, to make the problem manageable, 

we restrict the range of possible utility values to be in steps of 0.1 which makes the set of 

candidate 𝑢(𝑥) finite. Next, for each candidate 𝑢(𝑥), we analytically calculate expected 

earnings in the assumed environment and pick the 𝑢(𝑥) with the highest observed expected 

earnings as optimal.  

 

We calculate the expected earnings for each candidate 𝑢(𝑥) using the following steps. First, 

for each possible binary choice set, we calculate the expected objective value (not utility) of 

decisions made in this choice set using the current candidate 𝑢(𝑥) at the assumed capacity 

level. Because the random utility error term for a given capacity is normally distributed and the 

choice sets are binary, we can define the probability of making an error when choosing from 

{𝑥$ , 𝑥(} as 1 − Φ(+7-,8%+(--)
√'*#

) and compute it directly in Python. We thus calculate the expected 

earnings (𝐸𝑉) of choice set {𝑥$ , 𝑥(} under a given 𝑢(𝑥) as 𝐸𝑉$,( = (1 − ΦU+7-,8%+
(--)

√'*#
V)𝑥$ +

ΦU+7-,8%+
(--)

√'*#
V 𝑥(. Once the expected earnings of decisions in each possible choice set are 

computed for a given 𝑢(𝑥), we add them up weighing them by the probability with which each 

choice set occurs given the distribution of choice problems for the current environment. We 

repeat the exercise until we compute total expected earnings under each candidate 𝑢(𝑥) and 

then pick the 𝑢(𝑥) with the highest earnings as optimal. To understand how environments and 

capacity affect optimal 𝑢(𝑥), we then repeat the exercise for different environments and for 

different capacity levels. 

 

In Figure 2, we illustrate optimal 𝑢(𝑥) in environments with |𝑋| = 4 with positively skewed 

(Figure 2A), uniform (Figure 2B), and negatively skewed (Figure 2C) prize environments. The 

key insights are that, in the positively and negatively skewed environments, we see similar 

patterns as in our closed-form result with just three prizes (illustrated in Figure 1 in the 
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preceding section). In positively skewed environments, where low value prizes are more likely 

to enter choice sets, concave 𝑢(𝑥)’s emerge as optimal (Figure 2A). In negatively skewed 

environments, where high value prizes are more likely to enter choice sets, convex 𝑢(𝑥)’s 

emerge as optimal (Figure 2C). The uniform environment is different though. If the capacity is 

low enough (darker curves), we find that an S-shaped 𝑢(𝑥) is optimal.  

 

 
Figure 2 Optimal utility with Four Prizes 

 

Result: For sufficiently low capacities, environments with positively skewed prizes, result in 

concave optimal 𝑢(𝑥). Environments with negatively skewed prizes, result in convex optimal 

𝑢(𝑥). Environments with uniformly distributed prizes, result in S-shaped optimal 𝑢(𝑥). 

 

To gain further insights into how increasing the size of the set of possible prizes 𝑋 (while 

holding the choice set fixed as a binary choice problem) impacts optimal 𝑢(𝑥), we repeat our 

numerical procedure for |𝑋| = 7. The results are illustrated in Figure 3 and give two key 

insights. First, with a larger set of possible prizes, for all distributions at sufficiently low 

capacities, S-shaped 𝑢(𝑥)’s emerge as optimal. This happens not only in the uniform 

environment, but also in the positively and negatively skewed environments. In the positively 

skewed environments, as capacity increases, the optimal 𝑢(𝑥) changes from S-shaped to 

concave and then towards the linear function. In the negatively skewed environment, as 

capacity increases, the optimal 𝑢(𝑥) changes from S-shaped to convex and then linear. The 
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second key insight is that when capacity is low enough and the optimal 𝑢(𝑥) is S-shaped, the 

distribution of prizes in the environment determines the point at which the 𝑢(𝑥) inflects. We 

note that this point would traditionally be called a reference point in behavioral economic 

theory. Rather than being a fixed number (e.g. status quo), or a rule (e.g. maxmin), our results 

suggest that the inflection point in the utility curvature, if it occurs, changes according to the 

distribution of prizes in the environment. As illustrated in Figure 3, the inflection point occurs 

at higher prize values when higher value prizes are more frequent. It is important to note 

though, that in our theoretical framework, the reference point is not a primitive, or even a 

meaningful element of our approach. We note this because the reference point is a prominent 

primitive in many behavioral choice models. In our framework one can determine in what 

environments and at what capacities this point of maximal inflection in utility curvature 

emerges as an optimal representational feature.  

 

 
Figure 3 Optimal Utility with Seven Prizes 

 

Result: As the set of prizes increases, S-shaped 𝑢(𝑥) are more common. The inflection point 

in 𝑢(𝑥) depends on the distribution of prizes. 

 

3.3 Monte Carlo Solution for Any Environment – Larger Choice Sets 
 

In the preceding section, we investigated how increasing the size of the set of prizes in the 

environment changes the optimal 𝑢(𝑥) and established how the optimal 𝑢(𝑥) is determined by 

the underlying distribution of prizes. Now we ask whether, for a given distribution of prizes, 

increasing the choice set size (the number of options between which the chooser selects in a 
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given choice problem) has any effect on the shape of the optimal 𝑢(𝑥). A computational 

approach with Monte-Carlo simulations allows us to handle the complexity of this problem, 

ensuring reasonably accurate estimations of expected payoffs by assessing a million simulated 

choices for each possible combination of utility function, noise, environments and choice set 

size. 

 

As in the previous procedure, first, we define the environment by a finite set of possible prizes 

𝑋 and a probability distribution that determines the likelihood of each prize entering a choice 

set. Here, we additionally specify the size of the choice set. Second, we assume a capacity limit 

𝑐. Third, we set 𝑢(𝑥!) = 0 and 𝑢(𝑥#) = 𝑐. Our task is to find optimal 𝑢(𝑥$) for all 𝑖 ∈ (0, 𝑛). 

Given that there are an infinite number of candidate optimal utility functions, to make the 

problem manageable, we restrict the range of possible utility values by limiting the number of 

possible 𝑢(𝑥) to 50 values, equally spaced from 0 to 𝑐 which makes the set of the candidate 

𝑢(𝑥) finite. Next, for each candidate 𝑢(𝑥), we calculate its average expected earnings in the 

assumed environment using a Monte-Carlo simulation. For each 𝑢(𝑥), we simulate choices in 

1,000,000 randomly drawn choice problems and calculate average earnings. The prizes that 

form the individual choice problems are drawn from the set of all prizes according to the 

assumed probability distribution. To determine which prize is chosen from the choice problem 

presented to the chooser, we add a Gaussian noise 𝜖~𝑁(0,1) to 𝑢(𝑥) and assume that the 

simulated chooser picks the option with the highest 𝑈(𝑥). The optimal utility function is 

selected as the one with the maximum average expected earnings.  

 

Figure 4 illustrates that the optimal 𝑢(𝑥) changes as the choice set size increases from choosing 

between 2 to 10 options in a positively skewed environment for a chooser with capacity 𝑐 = 4. 

The key insight is that as the choice set size increases, the steepness of the optimal 𝑢(𝑥) across 

the prize ranges changes. As the choice set size increases, the 𝑢(𝑥) becomes shallower for low 

value prizes and steeper for high value prizes. This adjustment is optimal, because as choice 

set size increases, the choice sets are more likely to include high value prizes. From an 

optimality perspective, if a choice set includes both high value and low value prizes, it is always 

better for the chooser to be able to precisely discriminate between the high value prizes, that 

are effectively chosen, rather than low value prizes (that are unlikely to be selected anyway) in 

a given choice set. In Figure 5, we illustrate this effect of increasing choice set size for different 

environments and capacities. 
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Result: The size of the choice set affects the optimal 𝑢(𝑥). As choice sets increase, the optimal 

𝑢(𝑥) is steeper for high value prizes and shallower for low value prizes. 

 

 
Figure 4 Optimal Utility as Choice Set Size Increases 

 

One interesting feature is that as the number of options presented in a choice problem increases, 

the conditional probability that a given x-value will be selected changes. This is, in essence, a 

violation of the regularity axiom of McFadden (1974) that is observed as we move across 

choice set sizes, a violation driven by optimality. This can be seen clearly in Figures 4 and 5. 

Increases in the choice set size change the utility of each x, affecting the relative probabilities 

with which the prizes would be selected when offered. For example, using the utilities in Figure 

4, consider the relative probability of choosing 3 versus 4 when they are both offered in a choice 

set. When the choice set size is equal to two, the utility function is horizontal, and therefore the 

probability of choosing each prize is the same and equal to 50%. However, as the choice set 

size increases to ten, the utility function is no longer horizontal and the probability of choosing 

4 is higher than the probability of choosing 3.  
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Figure 5 Optimal Utility as Choice Set Size Increases by Capacity 

 

3.4. Deriving Optimal Capacity 
 

So far, we have considered capacity as a largely fixed parameter, examining how a chooser 

would behave if she was exogenously endowed with a range of possible capacities. We 

established that when the capacity constraint is binding, a chooser whose objective is to make 

as much money as possible, will nevertheless have curved utility function that depends on the 

distribution of rewards in their environment, choice set size, and their capacity level. Given the 

broad empirical evidence that choosers rarely have linear utilities, we take this to imply that at 
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an empirical level the capacity constraint must be binding for real human chooser. This raises 

an important question: why is capacity limited in the first place, and why have we not evolved 

to make decisions that consistently maximize expected earnings by developing higher cognitive 

capacities? 

 

To begin to examine that issue we start by noting that from a biological perspective capacity 

has been shown to be surprisingly costly (Lennie 2003, Glimcher 2022). Briefly, the capacity 

of the nervous system is constrained by two features: The number of neurons in the brain and 

the total informational capacity, or number of action potentials, generated by each of those 

individual neurons. A combination of these two factors defines k in our model. How costly then 

is a given brain with the maximum k it can produce? How can reducing the number of action 

potentials reduce costs? Hypothetically, one could envision a brain with so many neurons or 

neurons that can produce action potentials at such fast rates, that the capacity constraint would 

not be binding. However, it is essential to acknowledge that this would come at greater 

metabolic cost. Just as our muscles require calories to produce movement, our neurons 

consume calories to produce action potentials, and neural activity is particularly expensive. 

Although the brain accounts for approximately only 3% of our body mass, it consumes 20% of 

an average chooser’s recommended daily caloric intake. Increasing the processing capabilities 

of our brains ten times by adding more neurons or more action potentials, would push this 

figure to something like 70% (Glimcher 2022). This naturally reframes optimal capacity as a 

resource allocation problem: Given that additional capacity is costly and yields limited gains, 

how much capacity would a chooser elect to allocate to a given problem, and what limits on 

capacity would evolution place on choosers? 

 

To solve for optimal capacity, we continue to assume that the chooser’s goal is to maximize 

their earnings. For simplicity, we assume that the cost of capacity increases according to a 

simple linear function 𝑐𝑜𝑠𝑡(𝑐) = 𝑎𝑐, where 𝑎 > 0 is a cost parameter and 𝑐 > 0 is the capacity 

level. For illustration, we employ five values of the cost parameter 𝑎 (from 0.03 to 0.13) to 

demonstrate the relationship between costs and optimal capacity. These five cost functions are 

illustrated in the middle panel of Figure 6. We simplify the choice problem to binary choice 

sets and consider three environments (Figure 6; A: positively skewed, B: uniform, and C: 

negatively skewed). Using the analytical approach specified in section 3.2, for integer cognitive 
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capacity values that range from 1 to 10, we solve for the optimal 𝑢(𝑥) and calculate the 

corresponding expected earnings per decision.  

 

These earnings that reflect the most the chooser could earn in expectation in each environment, 

for each capacity, are shown as a function of capacity in the second to top panel of Figure 6. It 

is important to note that each of the points on the earning curves employs a different utility 

function, one optimally selected for that capacity level and that environment. While the 

earnings of the optimal chooser are consistently higher than those of a random chooser 

(indicated by the horizontal gray line), it is striking that the difference is surprisingly modest 

and largely plateaus at capacities of 4 or greater. Expected earnings increase with capacity, but 

at a diminishing rate, reflecting the diminishing marginal returns to increased capacity. 

 
 

Figure 6 Optimal Capacity for Different Cost Functions 
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Although the returns to capacity are diminishing, if adding capacity were truly costless, it 

would of course be optimal for a chooser to have infinite capacity. However, as we noted at the 

beginning of this section, capacity is by definition costly (Steverson et al. 2019). Therefore, to 

determine the optimal capacity level (and thus optimal 𝑢(𝑥)), we must consider these costs.  

We combine the benefits and costs of increasing capacity by calculating the difference between 

expected earnings and costs under each capacity level. These net earnings are illustrated in the 

second-to-bottom panel of Figure 6 with darker curves corresponding to highest costs and the 

capacity that yields highest net earnings marked with a black dot. The black dots thus indicate 

the optimal capacity levels for each cost function, i.e. the capacity at which the chooser gets 

the maximum earnings from their decision after accounting for the costs of capacity. 

The bottom panel of Figure 6 brings together the full analysis. Here we plot, for each 

cost level, the optimal capacity (and optimal 𝑢(𝑥) as insets). Were one to know the actual cost 

of capacity, it would be simple to select the optimal capacity and optimal 𝑢(𝑥) for any given 

environment and choice set size. More realistically, we can gain additional insights even 

without knowing the actual cost of capacity. Were one to observe stable utility functions in a 

real chooser and the prize distribution in which this chooser operates, one could then infer the 

cost of capacity. One could imagine strengthening such an inference by systematically 

increasing either the choice set size or the payoff magnitudes and observing how the estimated 

utility functions change. Such an approach would, in principle, allow for an estimation of the 

actual capacity cost faced by the chooser.  

 

4. Empirical Implications and Policy 
 

Unlike in the traditional models that take preferences as primitives, the primitives of our 

framework are the distribution of the rewards in the environment and the constraint that the 

cognitive capacity of the chooser is finite. Starting from this point we make a series of 

predictions of how each affects the shape of the optimal utility function for maximizing 

expected earnings. Here, we discuss the existing empirical evidence that supports our 

theoretical findings, highlight where evidence is still missing, and importantly elaborate what 

our findings and the existing evidence imply for theory and policy. We start by discussing the 

existing evidence on the associations between reward distributions, risk preferences and errors. 

Then, we shift our attention to the evidence on how cognitive capacity affects risk attitudes and 

decision errors. 
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4.1 Distribution of Prizes  

The idea that utility should optimally adapt to the distribution of prizes in a chooser’s 

environment is not new (Robson 2001, Rayo and Becker 2007, Glimcher 2010, Woodford 

2012). A small number of theoretical papers have demonstrated conditions under which the S-

shaped utility function, as proposed in Prospect Theory is optimal if the chooser’s goal is to 

minimize decision errors or maximize expected earnings (see (Vieider 2025) for review). While 

prior research has mainly aimed to justify the empirically observed S-shaped utility function, 

our work is the first to explicitly investigate how the distribution of prizes in the environment 

shapes the curvature of an optimal utility function. This enables us to bridge our normative 

model to observed behavioral patterns, providing a deeper understanding of the systematic 

variation across people. 

 

4.1.1 Distribution of Prizes and Risk Attitudes 

We predict a sharp difference in utility curvature depending on whether choosers are exposed 

to positively or negatively skewed prize distributions. Specifically, we show that optimal 

choosers who more frequently encounter lower-valued prizes will develop concave utility 

functions, while those who are exposed to higher-valued prizes will exhibit convex utility, even 

if the objective value range of the prizes remains the same. These theoretical predictions align 

with a robust body of empirical evidence linking risk attitudes and wealth. Lower-wealth 

households exhibit behaviors that are consistent with more concave utility functions. They are 

significantly less likely to participate in the stock market, to their financial detriment (Calvet 

et al. 2007). This wealth-risk correlation has been documented in large-scale representative 

surveys (Falk et al. 2018) and in laboratory experiments (Tymula et al. 2013). Similarly, lower 

willingness to take risk has been usually observed among women which could be driven by 

their more frequent exposure to negatively skewed financial payoffs and thus lower financial 

payoff expectations (Levy et al. 2025). The fact that gender differences in risk attitudes are not 

universally observed lends further support to the hypothesis that these differences are adaptive 

responses to the economic environment.  

 

In parallel, laboratory studies have shown that indeed utility functions are malleable and 

responsive to the distribution of past rewards both for risky and riskless choice. For example, 

Khaw et al. (2017) and Guo & Tymula (2021) found that even just brief exposure to low versus 

high prize distributions (under riskless conditions and without financial consequences) leads to 



 23 

reliable shifts in utility, as predicted in our model. Field studies echo these findings: people 

who entered the job market during a recession tend to invest less in stocks over their lifetimes 

(Malmendier and Nagel 2011), and those with lower income and socioeconomic status expect 

worse financial returns from the same financial opportunities and as a result take fewer 

financial risks and make less money (Das et al. 2020).  

 

4.1.2 Distribution of Prizes and Decision Errors 

The slope of the utility function determines the discriminability between the options and hence 

the likelihood of decision errors. Our model predicts that for choosers aiming to maximize 

earnings, it is optimal to exhibit steeper utility (and hence better discriminability) for prizes 

that are encountered more frequently and contribute more substantially to higher earnings. This 

insight allows our framework to account for a range of the well-documented behavioral 

phenomena, including many aspects of the curse of choice (i.e. the increase in decision errors 

as the number of prizes increases in a way that violates the regularity axiom), violations of the 

regularity axiom outside the curse of choice, and systematic changes in utility slope as prize 

distributions widen.  

 

When applied to socioeconomic differences, our model our model offers a compelling 

explanation for why people with lower incomes often perform well in low-stakes decisions but 

struggle in higher-stakes scenarios(Bertrand et al. 2004, Shah et al. 2012, Mani et al. 2013). 

Consistent with this literature, we conclude that people living in conditions of poverty or 

abundance are tuned to the statistical structure of their environments which is then reflected in 

their decisions. 

 

4.1.3 New Predictions and Policy Implications 

Our framework also generates several novel predictions that, to the best of our knowledge, 

have not yet been empirically tested. We find that increasing either the number of prizes in the 

environment or the number of options in the choice set, each independently can make the S-

shaped utility functions be more likely to be optimal—even when the underlying prize 

distribution is not normal. This untested prediction could explain why so many experiments 

observed S-shaped utility functions despite using skewed rather than normally distributed 

rewards.  
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We find that adding more options to the choice set increases the steepness of the utility for the 

higher-value prizes. Intuitively this follows from the fact that as the choice set size grows, it 

becomes more likely to include high-value prizes drawn from the environmental prize space, 

making it increasingly important to distinguish between them. In contrast, lower-value prizes 

become less relevant as they are increasingly unlikely to be selected as choice set sizes grow. 

This prediction offers another promising explanation for context-dependent changes in utility 

curvature to be tested in future research.  

 

Overall, the evidence that the slope and curvature of utility function adjusts to chooser’s prize 

distribution is strong. From a policy perspective this implies that people who are adapted to 

different prize distributions will make different decisions when faced with the same 

opportunities. These differences in choices may reflect their environmental conditions rather 

than their fixed preferences. It is thus important that policy makers are aware of these 

mechanistic dependencies that are likely built into our nervous system. Providing equal 

opportunities without recognizing the impact of heterogenous environments on decisions may 

be insufficient. Our approach illustrates that even if provided with equal opportunities, 

choosers with utilities optimized for different environments would make different choices. This 

suggests that optimizing both the choice environment and the methods by which we 

communicate the choice environment to choosers may be beneficial. Studies like (Frydman 

and Jin 2021, Guo and Tymula 2021, Khaw et al. 2021) highlight that it may be possible to 

adjust people to decision-relevant prize distributions within quite short timeframes before they 

are asked to make a choice. This suggests that, cleverly designed, even inconsequential, short 

exposures to some decision scenarios and other such decision-making aids could help people 

achieve outcomes more aligned with their true objectives. 

 

4.2 Cognitive Constraints 

In addition to prize distribution, the other primitive that influences utility curvature in our 

framework is cognitive capacity. We predict that as the cognitive capacity becomes less 

constrained, linear utility functions emerge. However, as the capacity constraint becomes more 

binding, utility curvature becomes environment-dependent: in positively skewed 

environments, optimal utility becomes concave; in negatively skewed environments, it 

becomes convex. In our model, cognitive capacity is determined by neurobiological constraints 

on computational precision, the intrinsic noise associated with the physical instantiation of 

utility representations in the brain. For decades, neurobiologists have examined the relationship 
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between brain structure and representational precision and have concluded, unsurprisingly, that 

smaller brains, fewer neurons, and lower metabolic capacities are all associated with lower 

precision. Gray matter volume (our proxy for capacity) is relatively stable in the short term but 

reduces over the lifespan of an adult. Thus, we predict that one important source of variation 

in behavior should happen along the life course developmental trajectory of the human brain. 

We know, for example, that the number of neurons in the human brain begins to decline around 

the age of 25, initially gradually and then more steeply after the mid 40s. These declines in 

neuron numbers are also correlated quite tightly with decreasing cognitive capacity. Below we 

review the existing evidence on how risk attitudes and decision errors change across lifespan 

and their direct association with the gray matter volume. 

 

4.2.1 Cognitive Constraints and Risk Attitude 

Our finding that utility curvature is associated with cognitive capacity suggests that when the 

environment remains unchanged, it should be a stable individual trait. Supporting this claim, 

previous studies (Gilaie-Dotan et al., 2014) found that risk attitudes correlate with gray matter 

volume in the posterior parietal cortex. People who have more neurons in this area (and thus 

can produce more action potentials, an equivalent of higher cognitive capacity in our model) 

are more risk neutral. Grubb et al. (2016) have shown that the age-related decrease in gray 

mattery volume in the posterior parietal cortex is associated with more concave utility 

functions. Moreover, it is the age-related decrease in gray matter volume and not the 

chronological age per se that drive the increase in concavity in ageing. Our linkage of 

neural/cognitive precision with cognitive capacity sheds light on the origins of these observed 

life course effects on the shape of the utility function. 

 

Our findings also align well with the observation that older adults exhibit greater risk aversion 

(more curvature) than do younger choosers, at least in the domain of gains (e.g., Barsky et al., 

1997). Additionally, studies examining risk taking across both gains and losses (Tymula et al. 

2013) have shown that while older adults are more risk averse for gains, they are more risk 

seeking for losses than younger adults. This pattern aligns with our prediction that lower 

cognitive capacity leads to greater deviations from risk neutrality.  

 

Outside the aging literature, a growing body of evidence indicates that lower socioeconomic 

status is associated with reduced gray matter volume across the life span (Noble et al. 2015) 

and a steeper rate of age-related decline (Steffener et al. 2016). This may help explain the lower 
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financial risk-taking observed in lower socioeconomic status groups, and faster increase in risk 

aversion with age within these populations (Schurer 2015).  

 

4.2.1 Cognitive Constraints and Decision Errors 

 

There is plenty of literature that associates aging with a decline in cognitive capacity including 

more costly decision errors. Chung et al. (Chung et al. 2017) measured individual study 

participants’ gray matter volume and the propensity to violate the Generalized Axiom of 

Revealed Preference violations in older adults. They found that the age-related violations can 

be traced to the decline in gray matter volume. Behavioral studies, for example (Tymula et al. 

2013), showed that older adults (over 65 years old) are much more likely to choose 

stochastically dominated lotteries than younger adults. These mistakes were not a result of the 

lack of understanding of the task but rather they were fully consistent with the implications of 

our definition of capacity. When choosing between $5 for sure and a lottery that pays $5 with 

some probability, older adults were more likely to choose the first-order stochastically 

dominated lottery the higher was the probability with which it would pay $5, that is the closer 

the two options were in their expected value. The decisions of older adults in this study, were 

also generally more random. 

 

4.2.1 Policy 

From a policy perspective, the good news is that gray matter volume is not fixed and, like 

muscle function, can improve with use. For example, studies have shown that London taxi 

drivers develop increased hippocampal volume due to intensive spatial navigation training 

(Maguire et al. 2006). These findings suggest, it is not far-fetched to imagine cognitive or 

behavioral interventions that promote structural brain changes, thereby enhancing or 

preserving financial decision-making abilities across the lifespan. 

 

5. Conclusions 

Our paper advances a novel framework for understanding human decision-making by 

emphasizing the importance of the probabilistic structure of the reward environment, acting as 

a prior distribution from which decision-makers must infer how to achieve maximization given 

their inherently limited precision in encoding the value of prizes. From the perspective of our 

framework, any choice problem that does not explicitly specify the distribution of potential 
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prizes and the limited capacity to encode value remains underspecified from the standpoint of 

a fully usable theory of choice. This marks a conceptual departure from standard approaches, 

which often describe prizes without specifying their associated probabilities and do not use 

cognitive capacity as a primitive. 

 

Drawing inspiration from Pascal, like some other recent papers (see Vieider (2025) for review) 

we adopt the premise that decision-makers aim to maximize the objective value of the rewards 

that they receive. In contrast to many traditional models, we abandon preferences as the 

primitives of our model. Curved utility functions emerge as a consequence of cognitively 

constrained decision-makers maximizing rewards in a deterministic choice setting. Thus, our 

findings can well-explain puzzling findings like those in Oprea (Oprea 2024) who found curved 

utility functions measured in riskless choice tasks correspond to utility curvature measured in 

the same decision makers exhibit in risky choice. Our framework is also in line with the 

findings in Barretto-García et al. (2023) who found a close link between number 

representations in riskless settings and willingness to take risk. 

 

Consistent with prior theories, we assume that individuals transform objective values into 

subjective ones via a measurement utility-like function and then compare them to chose the 

one that yields the highest utility. However, our model diverges by endogenizing this 

transformation: the utility function is treated not as a fixed but rather as a choice variable under 

the control of the decision-maker who wants to maximize their long-run earnings in a given 

prize environment. This allows us to separate the subjective representational structure of value 

from the objective function itself, offering a richer account of individual differences. 

 

Another central feature of our framework is the role of cognitive capacity, the precision with 

which the subjective representation of the objective value of rewards is measured. We initially 

treat precision as an exogenous but variable parameter and explore the space of optimal utility 

functions across different precision levels. We find that individual variation in choice behavior 

is driven by differences in cognitive capacity, in addition to differences in prize distributions. 

We extend our framework by considering the possibility that cognitive capacity itself may be 

subject to optimization. This formulation allows us to reframe the decision-making problem as 

an optimization problem where the only free parameter is the cost of cognitive capacity. 

Perhaps surprisingly, we observe that the marginal benefits of increased cognitive capacity are 
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modest suggesting that the returns to capacity may often be outweighed by even small 

associated costs. 

 

We note that in the companion psychology paper Glimcher, Singha and Tymula (2025), we 

examine an alternative objective function: the minimization of decision errors rather than the 

maximization of returns. We find that this alternative perspective yields behaviorally similar 

predictions in many—but not all—environments, suggesting that while different objectives can 

produce overlapping behavioral patterns, they may diverge under certain conditions. This 

comparative analysis underscores the importance of clarifying the assumed goals of the 

decision-maker when constructing predictive models of choice. 

 

One potential limitation of our approach is that we derive the optimal riskless and atemporal 

utility functions. Several papers provided evidence that utility elicited under riskless and risky 

conditions differ (Andreoni and Sprenger 2012, Chung et al. 2019) but others found that they 

are surprisingly alike (Oprea 2024). Given that this debate is still ongoing, although the 

implications of our riskless utility functions for risky choice are convincing (see section 4 for 

empirical evidence), we caution the reader to treat these extensions with caution. We note that 

we are in the process of generalizing our approach risky choice. This requires either assuming 

the independence axiom (effectively assuming no limits to the precision for representing 

probability) or extending our approach to the domain of probabilities. Our approach could also 

in principle be generalized to intertemporal choices by assuming an intertemporal objective 

function choosers seek to maximize. Under that set of conditions, one could analytically and/or 

numerically derive optimal discount functions in much the same way that we derive optimal 

utility functions here. All of these are important approaches that require further examination in 

future work. 
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